8 Hash Functions

8.1 Hash Functions

Hash Functions

A hash function is an efficient function mapping binary strings of arbitrary length to binary strings of fixed length (e.g. 128 bits), called the hash-value or digest.

Hash Functions

A hash function is many-to-one; many of the inputs to a hash function map to the same digest.

However, for cryptography, a hash function must be one-way.

• Given only a digest, it should be computationally infeasible to find a piece of data that produces the digest (pre-image resistant).

A collision is a situation where we have two different messages M and M' such that H(M) = H(M').

- A hash function should be collision free.
- A hash function is weakly collision-free or second pre-image resistant if given M it is computationally infeasible to find a different M' such that H(M) = H(M').
- A hash function is strongly collision-free if it is computationally infeasible to find different messages M and M' such that H(M) = H(M').

Hash Functions

In theory, given a digest D we can find data M that produces the digest by performing an exhaustive search.

- In fact, we can find as many pieces of such data that we want.
- With a well constructed hash function, there should not be a more efficient algorithm for finding *M*.

Why do we need hash functions?

- Given any data M we can determine its digest H(M).
- Since it is (computationally) impossible to find another piece of data M' that produces the same digest, in certain circumstances we can use the digest H(M) rather than M.
- We cannot recover M from H(M), but in general, the digest is smaller than the original data and therefore, its use may be more efficient.
- We can think of the digest as a unique fingerprint of the data.

8.2 Collisions

The Birthday Paradox

What is the probability that two people have the same birthday?

People	Possibilities	Different Possibilities
2	365 ²	365 × 364
3	365 ³	$365 \times 364 \times 363$
	:	
k	365 ^k	$365 \times 364 \times 363 \times \ldots \times (365 - k + 1)$
	000	

P(no common birthday) = $\frac{365 \times 364 \times 363 \times \ldots \times (365 - k + 1)}{365^k}$

The Birthday Paradox

With 22 people in a room, there is better than 50% chance that two people have a common birthday.

With 40 people in a room there is almost 90% chance that two people have a common birthday.

If there are *k* people, there are $\frac{k(k-1)}{2}$ pairs.

- The probability that one pair has a common birthday is $\frac{k(k-1)}{2\times 365}$.
- If $k \ge \sqrt{365}$ then this probability is more than half.

In general, if there are *n* possibilities then on average \sqrt{n} trials are required to find a collision.

Probability of Hash Collisions

Hash functions map an arbitrary length message to a fixed length digest.

Many messages will map to the same digest.

Consider a 1000-bit message and 128-bit digest.

• There are 2^{1000} possible messages.

- There are 2¹²⁸ possible digests.
- Therefore there are $2^{1000}/2^{128} = 2^{872}$ messages per digest value.

For a *n*-bit digest, we need to try an average of $2^{n/2}$ messages to find two with the same digest.

- For a 64-bit digest, this requires 2^{32} tries (feasible)
- For a 128-bit digest, this requires 2^{64} tries (not feasible)

Probability of Hash Collisions

Say B chooses 2^{32} messages M_i which A will accept that differ in 32 words, each of which has two choices:

 $A \begin{cases} \text{will} \\ \text{promises to} \end{cases} \begin{cases} \text{give} \\ \text{transfer to} \end{cases} B \text{ the amount of 100} \begin{cases} \text{US} \\ \text{American} \end{cases} \text{dollars} \begin{cases} \text{before} \\ \text{up to} \end{cases}$ $April 2013. \begin{cases} \text{Then} \\ \text{Later} \end{cases} B \text{ will} \begin{cases} \text{use} \\ \text{invest} \end{cases} \text{this amount for } \dots$

and 2^{32} messages M'_i which A will not accept that also differ in 32 words, each of which

has two choices: $A \begin{cases} \text{will} \\ \text{promises to} \end{cases} \begin{cases} \text{give} \\ \text{transfer to} \end{cases} B \text{ the amount of } \begin{cases} \text{twenty} \\ \text{forty} \end{cases} \begin{cases} \text{million} \\ \text{billion} \end{cases} \begin{cases} \text{US} \\ \text{American} \end{cases}$ $dollars \begin{cases} \text{which} \\ \text{that} \end{cases} \text{ is given as a present and } \begin{cases} \text{should} \\ \text{will} \end{cases}$ not be returned ...

Probability of Hash Collisions

By the birthday paradox, there is a high probability that there is some pair of messages M_i and M'_i such that $H(M_i) = H(M'_i)$.

Both messages have the same signature.

B can claim in court that A signed on M'_i .

Alternatively, A can choose such two messages, sign one of them, and later claim in court that she signed the other message.

8.3 **Merkle-Damgård Construction**

Hash Functions

Most practical hash functions make use of the Merkle-Damgård construction which divides the message M into fixed-length blocks M_1 , M_2 , etc., pads the last block and appends the message length to the last block.

The resultant last block (after all paddings) is denoted by M_n .

Then, the hash function applies a collision-free function H on each of the blocks sequentially:

The function H takes as input the result of the application of H on the previous block (or a fixed initial value IV in the first block), and the block itself, and results in a hash value.

The hash value is an input to the application of H on the next block.

Hash Functions

The result of *H* on the last block is the hashed value of the message h(M):

h_0	=	IV = a fixed initial value
h_1	=	$H(h_0, M_1)$
	÷	
h_i	=	$H(h_{i-1},M_i)$
<i>h</i> _n	=	$H(h_{n-1},M_n)$
h(M)	=	h_n

If H is collision-free, then h is also collision-free.

Hash Functions

Two approaches for the design of hash functions are:

- 1. To base the function *H* on a block cipher.
- 2. To design a special function *H*, not based on a block cipher.

The first approach was first proposed using DES; however the resulting hash is too small (64-bit).

- Susceptible to direct birthday attack.
- Also susceptible to "meet-in-the-middle" attack.

More modern block ciphers are suitable for implementing hash functions, but the second approach is more popular.

8.4 Commonly Used Hash Functions

Hash Functions

There are a number of widely used hash functions:

- MD2, MD4, MD5 (Rivest).
 - Produce 128-bit digests.
 - Analysis has uncovered some weaknesses with these.
- SHA-1 (Secure Hash Algorithm).
 - Produces 160-bit digests.

- SHA-2 family (Secure Hash Algorithm).
 - SHA-224, SHA-256, SHA-384 and SHA-512.
 - These yield digests of sizes 224, 256, 384 and 512 bits respectively.
- SHA-3 (Secure Hash Algorithm).
 - KECCAK recently announced as winner of NIST competition.
 - Works very differently to SHA-1 and SHA-2.
- RIPEMD, RIPEMD-160 (EU RIPE Project).
 - RIPEMD produces 128-bit digests.
 - RIPEMD-160 produces 160-bit digests.

MD5

Overview:

- Designed by Ron Rivest
- Latest in a series of MD2, MD4
- Produces a 128-bit hash value
- Until recently was the most widely used hash algorithm
- In recent times have both brute-force and cryptanalytic concerns
- Specified as Internet standard RFC1321

MD5

Operates as follows:

- 1. Pad message so its length is 448 mod 512
- 2. Append a 64-bit length value to message
- 3. Initialise 4-word (128-bit) MD buffer (A,B,C,D)
- 4. Process message in 16-word (512-bit) blocks:
 - Using 4 rounds of 16 bit operations on message block and buffer
 - Add output to buffer input to form new buffer value
- 5. Output hash value is the final buffer value

MD5

Compression function operates as follows:

• Each round has 16 steps of the form:

$$A = B + ((B + g(B, C, D) + X[k] + T[i]) < < < s)$$

- A,B,C,D refer to the 4 words of the buffer, but used in varying permutations
 - Note this updates only one word of the buffer
 - After 16 steps each word is updated 4 times
- g(B,C,D) is a different non-linear function in each round
- T[i] is a constant value derived from *sin*

MD5

Strength of MD5:

- MD5 hash is dependent on all message bits
- Rivest claims security is good as can be
- Known attacks are:
 - (Berson, 92) attacked any one round using differential cryptanalysis (but cannot extend)
 - (Boer & Bosselaers, 93) found a pseudo-collision (again unable to extend)
 - (Dobbertin, 96) created collisions on MD5 compression function (but initial constants prevent exploit)
- Conclusion is that MD5 looks vulnerable soon

SHA-1

Overview:

- The Secure Hash Standard was designed by the NSA, following the structure of Rivest's MD4 and MD5.
- The first standard was SHA (now called SHA-0).
- It was later changed slightly to SHA-1, due to some unknown weakness found by the NSA.
- US standard for use with DSA signature scheme (FIPS 180-1 1995, also Internet RFC3174)
- Produces 160-bit hash values

SHA-1

Operates as follows:

- 1. Pad message so its length is 448 mod 512
- 2. Append a 64-bit length value to message
- 3. Initialise 5-word (160-bit) buffer (*A*,*B*,*C*,*D*,*E*) to (67452301, *efcdab*89, 98*badcfe*, 10325476, *c*3*d*2*e*1*f*0)
- 4. Process message in 16-word (512-bit) chunks:
 - Expand 16 words into 80 words by mixing and shifting
 - Use 4 rounds of 20 bit operations on message block and buffer
 - Add output to input to form new buffer value
- 5. Output hash value is the final buffer value

SHA-1: The Function *H*

Compression function operates as follows:

• Each round has 20 steps which replaces the 5 buffer words (A, B, C, D, E) with:

 $(E + f(t, B, C, D) + (A \ll 5) + W_t + K_t), A, (B \ll 30), C, D)$

- *t* is the step number
- f(t, B, C, D) is nonlinear function for round
- W_t is derived from the message block
- *K_t* is a constant value derived from *sin*

SHA-1 versus MD5

- Brute force attack is harder (160 versus 128 bits for MD5)
- Not vulnerable to any other known attacks (compared to MD4/5)
- A little slower than MD5 (80 versus 64 steps)
- Both designed as simple and compact
- Optimised for big endian CPUs (versus MD5 which is optimised for little endian CPUs)

The SHA-2 Family

Overview:

- NIST have issued a revision FIPS 180-2
- Adds 3 additional hash algorithms: SHA-256, SHA-384, SHA-512
- · Designed for compatibility with increased security provided by the AES cipher
- Structure and detail is similar to SHA-1
- Hence analysis should be similar

RIPEMD-160

Overview:

- RIPEMD-160 was developed in Europe as part of RIPE project in 1996
- By researchers involved in attacks on MD4/5
- Initial proposal strengthened following analysis to become RIPEMD-160
- Somewhat similar to MD5/SHA
- Uses 2 parallel lines of 5 rounds of 16 steps
- Creates a 160-bit hash value
- Slower, but probably more secure, than SHA-1

RIPEMD-160

Operates as follows:

- 1. Pad message so its length is 448 mod 512
- 2. Append a 64-bit length value to message
- 3. Initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301, *efcdab89*,98badcfe, 10325476, c3d2e1f0)
- 4. Process message in 16-word (512-bit) chunks:
 - Use 10 rounds of 16 bit operations on message block and buffer in 2 parallel lines of 5
 - Add output to input to form new buffer value
- 5. Output hash value is the final buffer value

RIPEMD-160 versus MD5 and SHA-1

- Brute force attack harder (160 bits like SHA-1 versus 128 bits for MD5)
- Not vulnerable to known attacks (like SHA-1), though stronger (compared to MD4/5)
- Slower than MD5 (more steps)
- All designed as simple and compact
- SHA-1 optimised for big endian CPUs versus RIPEMD-160 and MD5 optimised for little endian CPUs

SHA-3 (Keccak)

Overview:

- Alternate, different hash function to MD5, SHA-0 and SHA-1
- Design : block permutation + sponge construction
- Not meant to replace SHA-2
- Efficient hardware implementation.
- Sponge construction:
 - Message blocks XORed with the state which is then permuted (one-way one-to-one mapping)
 - State is 5×5 matrix with 64 bit words = 1600 bits
 - Reduced versions with words of 32, 16, 8,4,2 or 1 bit

SHA-3 (Keccak)

Block permutation:

- Defined for $w = 2^l$ bit (w=64, l=6 for SHA-3)
- State = $5 \times 5 \times w$ bits array: notation: a[i, j, k] is the bit with index $(i \times 5 + j) \times w + k$
- Block permutation function = $12 + 2 \times l$ iterations of 5 subrounds ($f = l \circ \chi \circ \pi \circ \rho \circ \theta$):
 - θ : xor each of the 5 \times w columns of 5 bits parity of its two neighbours
 - ρ : bitwise rotate each of the 25 words by a different number, except a[0][0]
 - π : Permute the 25 words in a fixed pattern
 - χ : Bitwise combine along rows
 - ι : xor a round constant into one word of the state.

SHA-3 (Keccak)

Sponge construction = absorption + squeeze

- To hash variable-length messages by *r* bits blocks
- Absorption:
 - The r input bits are XORed with the r leading bits of the state
 - Block function f is applied
- Squeeze:
 - r first bits of the states produced as outputs
 - Block permutation applied if additional output required

Cryptanalysis of Hash Functions

Recall differential cryptanalysis of block ciphers:

- Look at difference of inputs and difference of outputs after each round.
- Never have different inputs producing same outputs.

In hash functions, output is shorter than input:

- There are different inputs which do produce the same outputs.
- Need to find these inputs.

Using the Merkle-Damgård construction, we need to find messages which produce the same value for the chaining variable h_i with high probability, and set all of the remaining blocks to be the same.

8.5 Applications of Hash Functions

Applications of Hash Functions

Applications of hash functions:

- Message authentication: used to check if a message has been modified.
- Digital signatures: encrypt digest with private key.
- Password storage: digest of password is compared with that in the storage; hackers can not get password from storage.
- Key generation: key can be generated from digest of pass-phrase; can be made computationally expensive to prevent brute-force attacks.
- Pseudorandom number generation: iterated hashing of a seed value.
- Intrusion detection and virus detection: keep and check hash of files on system

Information Security

Modern cryptography deals with more than just the encryption of data. It also provides primitives to counteract active attacks on the communication channel.

- Confidentiality (only Alice and Bob can understand the communication)
- Integrity (Alice and Bob have assurance that the communication has not been tampered with)
- Authenticity (Alice and Bob have assurance about the origin of the communication)

Data Integrity

Encryption provides confidentiality. Encryption does not necessarily provide integrity of data. Counterexamples:

- Changing order in ECB mode.
- Encryption of a compressed file, i.e. without redundancy.
- Encryption of a random key.

Use cryptographic function to get a check-value and send it with data. Two types:

- Manipulation Detection Codes (MDC).
- Message Authentication Codes (MAC).

Manipulation Detection Code (MDC)

MDC: hash function without key.

The MDC is concatenated with the data and then the combination is encrypted/signed (to stop tampering with the MDC). $MDC = e_k(m||h(m))$, where:

- *e* is the encryption function.
- *k* is the secret key.
- *h* is the hash function.
- *m* is the message.
- || denotes concatenation of data items.

Two types of MDC:

- MDCs based on block ciphers.
- Customised hash functions.

Manipulation Detection Code (MDC)

Most MDCs are constructed as iterated hash functions.

Compression/hash function f. Output transformation g. Unambiguous padding needed if length is not multiple of block length.

Message Authentication Code (MAC)

MAC: hash function with secret key.

Message Authentication Code (MAC) $MAC = h_k(m)$, where:

 $mAC = n_k(m)$, where.

- *h* is the hash function.
- *k* is the secret key.

• *m* is the message.

Transmit m||MAC, where || denotes concatenation of data items. Description of hash function is public. Maps string of arbitrary length to string of fixed length (32-160 bits). Computing $h_k(m)$ easy given m and k. Computing $h_k(m)$ given m, but not k should be very difficult, even if a large number of pairs $\{m_i, h_k(m_i)\}$ are known.

MAC Mechanisms

There are various types of MAC scheme:

- MACs based on block ciphers in CBC mode.
- MACs based on MDCs.
- Customized MACs.

Best known and most widely used by far are the CBC-MACs. CBC-MACs are the subject of various international standards:

- US Banking standards ANSIX9.9, ANSIX9.19.
- Specify CBC-MACs, date back to early 1980s.
- The ISO version is ISO 8731-1: 1987.

Above standards specify DES in CBC mode to produce a MAC.

CBC-MAC

Given an *n*-bit block cipher, one constructs an *m*-bit MAC ($m \le n$) as:

- Encipher the blocks using CBC mode (with padding if necessary).
- Last block is the MAC, after optional post-processing and truncation if m < n.

If the *n*-bit data blocks are m_1, m_2, \ldots, m_q then the MAC is computed by:

- Put $I_1 = m_1$ and $O_1 = e_k(I_1)$.
- Perform the following for i = 2, 3, ..., q:
 - $I_i = m_i \oplus O_{i-1}.$
 - $O_i = \frac{e_k(I_i)}{e_k(I_i)}.$
- O_q is then subject to an optional post-processing.
- The result is truncated to *m* bits to give the final MAC.

CBC-MAC

CBC-MAC: Padding

There are three possible padding methods proposed in the standards:

- Method 1: Add as many zeroes as necessary to make a whole number of blocks.
- Method 2: Add a single one followed by as many zeroes as necessary to make a whole number of blocks.
- Method 3: As for method 1, but also add an extra block containing the length of the unpadded message.

The first method does not allow detection of additional or deletion of trailing zeroes.

• Unless message length is known by the recipient.

CBC-MAC: Post-Processing

Two specified optional post-processes:

• Choose a key k_1 and compute:

$$O_q = e_k(d_{k_1}(O_q))$$

• Choose a key k_1 and compute:

$$O_q = e_{k_1}(O_q)$$

The optional process can make it more difficult for a cryptanalyst to do an exhaustive key search for the key k.

MACs based on MDCs

Given a key *k*, how do you transform a MDC *h* into a MAC? Secret prefix method: $MAC_k(m) = h(k||m)$

• Can compute $MAC_k(m||m') = h(k||m||m')$ without knowing k.

Secret suffix method: $MAC_k(m) = h(m||k)$

• Off-line attacks possible to find a collision in the hash function.

Envelope method with padding: $MAC_k(m) = h(k||p||m||k)$

• *p* is a string used to pad *k* to the length of one block.

None of these is very secure, better to use HMAC:

 $HMAC_k(m) = h(k||p_1||h(k||p_2||m))$

with p_1, p_2 fixed strings used to pad k to full block.

MACs versus MDCs

Data integrity without confidentiality:

- MAC: compute $MAC_k(m)$ and send $m || MAC_k(m)$.
- MDC: send *m* and compute *MDC*(*m*), which needs to be sent over an authenticated channel.

Data integrity with confidentiality:

- MAC: needs two different keys k_1 and k_2 .
 - One for encryption and one for MAC.
 - Compute $c = e_{k_1}(m)$ and then appends $MAC_{k_2}(c)$.
- MDC: only needs one key k for encryption.
 - Compute MDC(m) and send $c = e_k(m||MDC(m))$.

Password Storage

Storing unencrypted passwords is obviously insecure and susceptible to attack. Can store instead the digest of passwords.

- They need to be easy to remember.
- They should not be subject to a dictionary attack.

Can make use of a salt, which is a known random value that is combined with the password before applying the hash.

- The salt is stored alongside the digest in the password file: $\langle s, H(p||s) \rangle$.
- By using a salt, constructing a table of possible digests will be difficult, since there will be many possible for each password.
- An attacker will thus be limited to searching through a table of passwords and computing the digest for the salt that has been used.

Key Generation

We can generate a key at random.

- Most cryptographic APIs have facilities to generate keys at random.
- These facilities normally avoid weak keys.

We can also derive a key from a passphrase by applying a hash and using a salt.

• There are a number of standards for deriving a symmetric key from a passphrase e.g. PKCS#5.

This key generation may also require a number of iterations of the hash function.

- This makes the computation of the key less efficient.
- An attacker performing an exhaustive search will therefore require more computing resources or more time.

Pseudorandom Number Generation

Hash functions can be used to build a computationally-secure pseudo-random number generator as follows:

- First we seed the PRNG with some random data S.
- This is then hashed to produce the first internal state $S_0 = H(S)$.
- By repeatedly calling *H* we can generate a sequence of internal states $S_1, S_2, ...,$ using $S_i = H(S_{i-1})$.
- From each state S_i we can extract bits to produce a random number N_i .
- This PRNG is secure if the sequence of values *S*, *S*₀, *S*₁,... is kept secret and the number of bits of *S_i* used to compute *N_i* is relatively small.