
CA642: CRYPTOGRAPHY AND NUMBER THEORY 1

8 Hash Functions

8.1 Hash Functions
Hash Functions
A hash function is an efficient function mapping binary strings of arbitrary length to
binary strings of fixed length (e.g. 128 bits), called the hash-value or digest.

Hash Functions
A hash function is many-to-one; many of the inputs to a hash function map to the same
digest.
However, for cryptography, a hash function must be one-way.

• Given only a digest, it should be computationally infeasible to find a piece of
data that produces the digest (pre-image resistant).

A collision is a situation where we have two different messages M and M′ such that
H(M) = H(M′).

• A hash function should be collision free.

• A hash function is weakly collision-free or second pre-image resistant if given M
it is computationally infeasible to find a different M′ such that H(M) = H(M′).

• A hash function is strongly collision-free if it is computationally infeasible to
find different messages M and M′ such that H(M) = H(M′).

Hash Functions
In theory, given a digest D we can find data M that produces the digest by performing
an exhaustive search.

• In fact, we can find as many pieces of such data that we want.

• With a well constructed hash function, there should not be a more efficient algo-
rithm for finding M.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 2

Why do we need hash functions?

• Given any data M we can determine its digest H(M).

• Since it is (computationally) impossible to find another piece of data M′ that
produces the same digest, in certain circumstances we can use the digest H(M)
rather than M.

• We cannot recover M from H(M), but in general, the digest is smaller than the
original data and therefore, its use may be more efficient.

• We can think of the digest as a unique fingerprint of the data.

8.2 Collisions
The Birthday Paradox
What is the probability that two people have the same birthday?

People Possibilities Different Possibilities
2 3652 365×364
3 3653 365×364×363

...
k 365k 365×364×363× . . .× (365− k+1)

P(no common birthday) =
365×364×363× . . .× (365− k+1)

365k

The Birthday Paradox
With 22 people in a room, there is better than 50% chance that two people have a
common birthday.
With 40 people in a room there is almost 90% chance that two people have a common
birthday.
If there are k people, there are k(k−1)

2 pairs.

• The probability that one pair has a common birthday is k(k−1)
2×365 .

• If k ≥
√

365 then this probability is more than half.

In general, if there are n possibilities then on average
√

n trials are required to find a
collision.

Probability of Hash Collisions
Hash functions map an arbitrary length message to a fixed length digest.

• Many messages will map to the same digest.

Consider a 1000-bit message and 128-bit digest.

• There are 21000 possible messages.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 3

• There are 2128 possible digests.

• Therefore there are 21000/2128 = 2872 messages per digest value.

For a n-bit digest, we need to try an average of 2n/2 messages to find two with the same
digest.

• For a 64-bit digest, this requires 232 tries (feasible)

• For a 128-bit digest, this requires 264 tries (not feasible)

Probability of Hash Collisions
Say B chooses 232 messages Mi which A will accept that differ in 32 words, each of
which has two choices:

A
{

will
promises to

}{
give
transfer to

}
B the amount of 100

{
US
American

}
dollars

{
before
up to

}
April 2013.

{
Then
Later

}
B will

{
use
invest

}
this amount for . . .

and 232 messages M′j which A will not accept that also differ in 32 words, each of which
has two choices:

A
{

will
promises to

}{
give
transfer to

}
B the amount of

{
twenty
forty

}{
million
billion

}{
US
American

}
dollars

{
which
that

}
is given as a present and

{
should
will

}
not be returned . . .

Probability of Hash Collisions
By the birthday paradox, there is a high probability that there is some pair of messages
Mi and M′j such that H(Mi) = H(M′j).
Both messages have the same signature.
B can claim in court that A signed on M′j.
Alternatively, A can choose such two messages, sign one of them, and later claim in
court that she signed the other message.

8.3 Merkle-Damgård Construction
Hash Functions
Most practical hash functions make use of the Merkle-Damgård construction which
divides the message M into fixed-length blocks M1, M2, etc., pads the last block and
appends the message length to the last block.
The resultant last block (after all paddings) is denoted by Mn.
Then, the hash function applies a collision-free function H on each of the blocks se-
quentially:

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 4

The function H takes as input the result of the application of H on the previous block
(or a fixed initial value IV in the first block), and the block itself, and results in a hash
value.
The hash value is an input to the application of H on the next block.

Hash Functions
The result of H on the last block is the hashed value of the message h(M):

h0 = IV = a fixed initial value
h1 = H(h0,M1)

...
hi = H(hi−1,Mi)
hn = H(hn−1,Mn)

h(M) = hn

If H is collision-free, then h is also collision-free.

Hash Functions
Two approaches for the design of hash functions are:

1. To base the function H on a block cipher.

2. To design a special function H, not based on a block cipher.

The first approach was first proposed using DES; however the resulting hash is too
small (64-bit).

• Susceptible to direct birthday attack.

• Also susceptible to “meet-in-the-middle” attack.

More modern block ciphers are suitable for implementing hash functions, but the sec-
ond approach is more popular.

8.4 Commonly Used Hash Functions
Hash Functions
There are a number of widely used hash functions:

• MD2, MD4, MD5 (Rivest).

– Produce 128-bit digests.

– Analysis has uncovered some weaknesses with these.

• SHA-1 (Secure Hash Algorithm).

– Produces 160-bit digests.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 5

• SHA-2 family (Secure Hash Algorithm).

– SHA-224, SHA-256, SHA-384 and SHA-512.

– These yield digests of sizes 224, 256, 384 and 512 bits respectively.

• SHA-3 (Secure Hash Algorithm).

– KECCAK recently announced as winner of NIST competition.

– Works very differently to SHA-1 and SHA-2.

• RIPEMD, RIPEMD-160 (EU RIPE Project).

– RIPEMD produces 128-bit digests.

– RIPEMD-160 produces 160-bit digests.

MD5
Overview:

• Designed by Ron Rivest

• Latest in a series of MD2, MD4

• Produces a 128-bit hash value

• Until recently was the most widely used hash algorithm

• In recent times have both brute-force and cryptanalytic concerns

• Specified as Internet standard RFC1321

MD5
Operates as follows:

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 4-word (128-bit) MD buffer (A,B,C,D)

4. Process message in 16-word (512-bit) blocks:

• Using 4 rounds of 16 bit operations on message block and buffer

• Add output to buffer input to form new buffer value

5. Output hash value is the final buffer value

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 6

MD5
Compression function operates as follows:

• Each round has 16 steps of the form:

A = B+((B+g(B,C,D)+X [k]+T [i])<<< s)

• A,B,C,D refer to the 4 words of the buffer, but used in varying permutations

– Note this updates only one word of the buffer

– After 16 steps each word is updated 4 times

• g(B,C,D) is a different non-linear function in each round

• T [i] is a constant value derived from sin

MD5
Strength of MD5:

• MD5 hash is dependent on all message bits

• Rivest claims security is good as can be

• Known attacks are:

– (Berson, 92) attacked any one round using differential cryptanalysis (but
cannot extend)

– (Boer & Bosselaers, 93) found a pseudo-collision (again unable to extend)

– (Dobbertin, 96) created collisions on MD5 compression function (but ini-
tial constants prevent exploit)

• Conclusion is that MD5 looks vulnerable soon

SHA-1
Overview:

• The Secure Hash Standard was designed by the NSA, following the structure of
Rivest’s MD4 and MD5.

• The first standard was SHA (now called SHA-0).

• It was later changed slightly to SHA-1, due to some unknown weakness found
by the NSA.

• US standard for use with DSA signature scheme (FIPS 180-1 1995, also Internet
RFC3174)

• Produces 160-bit hash values

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 7

SHA-1
Operates as follows:

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301,e f cdab89,98badc f e,10325476,c3d2e1 f 0)

4. Process message in 16-word (512-bit) chunks:

• Expand 16 words into 80 words by mixing and shifting

• Use 4 rounds of 20 bit operations on message block and buffer

• Add output to input to form new buffer value

5. Output hash value is the final buffer value

SHA-1: The Function H
Compression function operates as follows:

• Each round has 20 steps which replaces the 5 buffer words (A,B,C,D,E) with:

(E + f (t,B,C,D)+(A << 5)+Wt +Kt),A,(B << 30),C,D)

• t is the step number

• f (t,B,C,D) is nonlinear function for round

• Wt is derived from the message block

• Kt is a constant value derived from sin

SHA-1 versus MD5

• Brute force attack is harder (160 versus 128 bits for MD5)

• Not vulnerable to any other known attacks (compared to MD4/5)

• A little slower than MD5 (80 versus 64 steps)

• Both designed as simple and compact

• Optimised for big endian CPUs (versus MD5 which is optimised for little endian
CPUs)

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 8

The SHA-2 Family
Overview:

• NIST have issued a revision FIPS 180-2

• Adds 3 additional hash algorithms: SHA-256, SHA-384, SHA-512

• Designed for compatibility with increased security provided by the AES cipher

• Structure and detail is similar to SHA-1

• Hence analysis should be similar

RIPEMD-160
Overview:

• RIPEMD-160 was developed in Europe as part of RIPE project in 1996

• By researchers involved in attacks on MD4/5

• Initial proposal strengthened following analysis to become RIPEMD-160

• Somewhat similar to MD5/SHA

• Uses 2 parallel lines of 5 rounds of 16 steps

• Creates a 160-bit hash value

• Slower, but probably more secure, than SHA-1

RIPEMD-160
Operates as follows:

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301,e f cdab89,98badc f e,10325476,c3d2e1 f 0)

4. Process message in 16-word (512-bit) chunks:

• Use 10 rounds of 16 bit operations on message block and buffer in 2 parallel
lines of 5

• Add output to input to form new buffer value

5. Output hash value is the final buffer value

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 9

RIPEMD-160 versus MD5 and SHA-1

• Brute force attack harder (160 bits like SHA-1 versus 128 bits for MD5)

• Not vulnerable to known attacks (like SHA-1), though stronger (compared to
MD4/5)

• Slower than MD5 (more steps)

• All designed as simple and compact

• SHA-1 optimised for big endian CPUs versus RIPEMD-160 and MD5 optimised
for little endian CPUs

SHA-3 (Keccak)
Overview:

• Alternate, different hash function to MD5, SHA-0 and SHA-1

• Design : block permutation + sponge construction

• Not meant to replace SHA-2

• Efficient hardware implementation.

• Sponge construction:

– Message blocks XORed with the state which is then permuted (one-way
one-to-one mapping)

– State is 5×5 matrix with 64 bit words = 1600 bits

– Reduced versions with words of 32, 16, 8,4,2 or 1 bit

SHA-3 (Keccak)
Block permutation:

• Defined for w = 2l bit (w=64, l= 6 for SHA-3)

• State = 5×5×w bits array: notation: a[i, j,k] is the bit with index (i×5+ j)×
w+ k

• Block permutation function = 12+2× l iterations of 5 subrounds (f = ι ◦χ ◦π ◦
ρ ◦θ):

– θ : xor each of the 5×w columns of 5 bits parity of its two neighbours

– ρ: bitwise rotate each of the 25 words by a different number, except a[0][0]

– π: Permute the 25 words in a fixed pattern

– χ: Bitwise combine along rows

– ι : xor a round constant into one word of the state.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 10

SHA-3 (Keccak)
Sponge construction = absorption + squeeze

• To hash variable-length messages by r bits blocks

• Absorption:

– The r input bits are XORed with the r leading bits of the state

– Block function f is applied

• Squeeze:

– r first bits of the states produced as outputs

– Block permutation applied if additional output required

Cryptanalysis of Hash Functions
Recall differential cryptanalysis of block ciphers:

• Look at difference of inputs and difference of outputs after each round.

• Never have different inputs producing same outputs.

In hash functions, output is shorter than input:

• There are different inputs which do produce the same outputs.

• Need to find these inputs.

Using the Merkle-Damgård construction, we need to find messages which produce
the same value for the chaining variable hi with high probability, and set all of the
remaining blocks to be the same.

8.5 Applications of Hash Functions
Applications of Hash Functions
Applications of hash functions:

• Message authentication: used to check if a message has been modified.

• Digital signatures: encrypt digest with private key.

• Password storage: digest of password is compared with that in the storage; hack-
ers can not get password from storage.

• Key generation: key can be generated from digest of pass-phrase; can be made
computationally expensive to prevent brute-force attacks.

• Pseudorandom number generation: iterated hashing of a seed value.

• Intrusion detection and virus detection: keep and check hash of files on system

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 11

Information Security
Modern cryptography deals with more than just the encryption of data.
It also provides primitives to counteract active attacks on the communication channel.

• Confidentiality (only Alice and Bob can understand the communication)

• Integrity (Alice and Bob have assurance that the communication has not been
tampered with)

• Authenticity (Alice and Bob have assurance about the origin of the communica-
tion)

Data Integrity
Encryption provides confidentiality.
Encryption does not necessarily provide integrity of data.
Counterexamples:

• Changing order in ECB mode.

• Encryption of a compressed file, i.e. without redundancy.

• Encryption of a random key.

Use cryptographic function to get a check-value and send it with data. Two types:

• Manipulation Detection Codes (MDC).

• Message Authentication Codes (MAC).

Manipulation Detection Code (MDC)
MDC: hash function without key.
The MDC is concatenated with the data and then the combination is encrypted/signed
(to stop tampering with the MDC). MDC = ek(m||h(m)), where:

• e is the encryption function.

• k is the secret key.

• h is the hash function.

• m is the message.

• || denotes concatenation of data items.

Two types of MDC:

• MDCs based on block ciphers.

• Customised hash functions.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 12

Manipulation Detection Code (MDC)
Most MDCs are constructed as iterated hash functions.

Compression/hash function f .
Output transformation g.
Unambiguous padding needed if length is not multiple of block length.

Message Authentication Code (MAC)
MAC: hash function with secret key.

Message Authentication Code (MAC)
MAC = hk(m), where:

• h is the hash function.

• k is the secret key.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 13

• m is the message.

Transmit m||MAC, where || denotes concatenation of data items.
Description of hash function is public.
Maps string of arbitrary length to string of fixed length (32-160 bits).
Computing hk(m) easy given m and k.
Computing hk(m) given m, but not k should be very difficult, even if a large number of
pairs {mi,hk(mi)} are known.

MAC Mechanisms
There are various types of MAC scheme:

• MACs based on block ciphers in CBC mode.

• MACs based on MDCs.

• Customized MACs.

Best known and most widely used by far are the CBC-MACs.
CBC-MACs are the subject of various international standards:

• US Banking standards ANSIX9.9, ANSIX9.19.

• Specify CBC-MACs, date back to early 1980s.

• The ISO version is ISO 8731-1: 1987.

Above standards specify DES in CBC mode to produce a MAC.

CBC-MAC
Given an n-bit block cipher, one constructs an m-bit MAC (m≤ n) as:

• Encipher the blocks using CBC mode (with padding if necessary).

• Last block is the MAC, after optional post-processing and truncation if m < n.

If the n-bit data blocks are m1,m2, . . . ,mq then the MAC is computed by:

• Put I1 = m1 and O1 = ek(I1).

• Perform the following for i = 2,3, . . . ,q:

– Ii = mi⊕Oi−1.

– Oi = ek(Ii).

• Oq is then subject to an optional post-processing.

• The result is truncated to m bits to give the final MAC.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 14

CBC-MAC

CBC-MAC: Padding
There are three possible padding methods proposed in the standards:

• Method 1: Add as many zeroes as necessary to make a whole number of blocks.

• Method 2: Add a single one followed by as many zeroes as necessary to make a
whole number of blocks.

• Method 3: As for method 1, but also add an extra block containing the length of
the unpadded message.

The first method does not allow detection of additional or deletion of trailing zeroes.

• Unless message length is known by the recipient.

CBC-MAC: Post-Processing
Two specified optional post-processes:

• Choose a key k1 and compute:

Oq = ek(dk1(Oq))

• Choose a key k1 and compute:

Oq = ek1(Oq)

The optional process can make it more difficult for a cryptanalyst to do an exhaustive
key search for the key k.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 15

MACs based on MDCs
Given a key k, how do you transform a MDC h into a MAC?
Secret prefix method: MACk(m) = h(k||m)

• Can compute MACk(m||m′) = h(k||m||m′) without knowing k.

Secret suffix method: MACk(m) = h(m||k)
• Off-line attacks possible to find a collision in the hash function.

Envelope method with padding: MACk(m) = h(k||p||m||k)
• p is a string used to pad k to the length of one block.

None of these is very secure, better to use HMAC:

HMACk(m) = h(k||p1||h(k||p2||m))

with p1, p2 fixed strings used to pad k to full block.

MACs versus MDCs
Data integrity without confidentiality:

• MAC: compute MACk(m) and send m||MACk(m).

• MDC: send m and compute MDC(m), which needs to be sent over an authenti-
cated channel.

Data integrity with confidentiality:

• MAC: needs two different keys k1 and k2.

– One for encryption and one for MAC.
– Compute c = ek1(m) and then appends MACk2(c).

• MDC: only needs one key k for encryption.

– Compute MDC(m) and send c = ek(m||MDC(m)).

Password Storage
Storing unencrypted passwords is obviously insecure and susceptible to attack.
Can store instead the digest of passwords.

• They need to be easy to remember.

• They should not be subject to a dictionary attack.

Can make use of a salt, which is a known random value that is combined with the
password before applying the hash.

• The salt is stored alongside the digest in the password file: 〈s,H(p||s)〉.

• By using a salt, constructing a table of possible digests will be difficult, since
there will be many possible for each password.

• An attacker will thus be limited to searching through a table of passwords and
computing the digest for the salt that has been used.

Geoff Hamilton

CA642: CRYPTOGRAPHY AND NUMBER THEORY 16

Key Generation
We can generate a key at random.

• Most cryptographic APIs have facilities to generate keys at random.

• These facilities normally avoid weak keys.

We can also derive a key from a passphrase by applying a hash and using a salt.

• There are a number of standards for deriving a symmetric key from a passphrase
e.g. PKCS#5.

This key generation may also require a number of iterations of the hash function.

• This makes the computation of the key less efficient.

• An attacker performing an exhaustive search will therefore require more com-
puting resources or more time.

Pseudorandom Number Generation
Hash functions can be used to build a computationally-secure pseudo-random number
generator as follows:

• First we seed the PRNG with some random data S.

• This is then hashed to produce the first internal state S0 = H(S).

• By repeatedly calling H we can generate a sequence of internal states S1,S2, . . . ,
using Si = H(Si−1).

• From each state Si we can extract bits to produce a random number Ni.

• This PRNG is secure if the sequence of values S,S0,S1, . . . is kept secret and the
number of bits of Si used to compute Ni is relatively small.

Geoff Hamilton

	Hash Functions
	Hash Functions
	Collisions
	Merkle-Damgård Construction
	Commonly Used Hash Functions
	Applications of Hash Functions

