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8 Hash Functions

8.1 Hash Functions

Hash Functions
A hash function is an efficient function mapping binary strings of arbitrary length to
binary strings of fixed length (e.g. 128 bits), called the hash-value or digest.

Constructions for hash functions based on a block]
cipher are studied where the size of the hash code
is equal to the block length of the block cipher and|
where the key size is approximately equal to the
block length. A general model is presented, and|
it is shown that this model covers 9 schemes that|

have appeared in the literature. Within this gen-|
feral model 64 possible schemes exist, and it is shown————— il’ 72392 1 568
that 12 of these are secure; they can be reduced to 2|

classes based on linear transformations of variables|
The properties of these 12 schemes with respect to
weaknesses of the underlying block cipher are stud-|
ied. The same approach can be extended to study|
keyed hash functions (MACs) based on block ci
phers and hash functions

Hash Functions

A hash function is many-to-one; many of the inputs to a hash function map to the same
digest.

However, for cryptography, a hash function must be one-way.

e Given only a digest, it should be computationally infeasible to find a piece of
data that produces the digest (pre-image resistant).

A collision is a situation where we have two different messages M and M’ such that
H(M)=HM").

e A hash function should be collision free.

o A hash function is weakly collision-free or second pre-image resistant if given M
it is computationally infeasible to find a different M’ such that H(M) = H(M').

e A hash function is strongly collision-free if it is computationally infeasible to

find different messages M and M’ such that H(M) = H(M').

Hash Functions
In theory, given a digest D we can find data M that produces the digest by performing
an exhaustive search.

e In fact, we can find as many pieces of such data that we want.

e With a well constructed hash function, there should not be a more efficient algo-
rithm for finding M.
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Why do we need hash functions?
e Given any data M we can determine its digest H(M).

e Since it is (computationally) impossible to find another piece of data M’ that
produces the same digest, in certain circumstances we can use the digest H(M)
rather than M.

e We cannot recover M from H(M), but in general, the digest is smaller than the
original data and therefore, its use may be more efficient.

e We can think of the digest as a unique fingerprint of the data.

8.2 Collisions

The Birthday Paradox
What is the probability that two people have the same birthday?

People | Possibilities | Different Possibilities
2 3657 365 x 364
3 365° 365 x 364 x 363
k 365¢ 365 x 364 X363 x...x (365—k+1)

365 x 364 x 363 % ... x (365 —k+1)
365K

P(no common birthday) =

The Birthday Paradox

With 22 people in a room, there is better than 50% chance that two people have a
common birthday.

With 40 people in a room there is almost 90% chance that two people have a common
birthday.

If there are k people, there are k<k2_ D pairs.

oqe . . . k(k-])
e The probability that one pair has a common birthday is ~ <.

e If £k > /365 then this probability is more than half.

In general, if there are n possibilities then on average +/n trials are required to find a
collision.

Probability of Hash Collisions

Hash functions map an arbitrary length message to a fixed length digest.
e Many messages will map to the same digest.

Consider a 1000-bit message and 128-bit digest.

e There are 2'°% possible messages.
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e There are 2!?® possible digests.

21000/2128 _ 2872

e Therefore there are messages per digest value.

For a n-bit digest, we need to try an average of 2"/ messages to find two with the same
digest.

e For a 64-bit digest, this requires 23 tries (feasible)

e For a 128-bit digest, this requires 2%* tries (not feasible)

Probability of Hash Collisions
Say B chooses 232 messages M; which A will accept that differ in 32 words, each of
which has two choices:

will . give B the amount of 100 us . dollars before
promises to transfer to American up to

April 2013. {The“ } B will {Pse }this amount for . ..
Later invest

and 232 messages M ; which A will not accept that also differ in 32 words, each of which
has two choices:

A will give B the amount of twenty | | million | [US
promises to | | transfer to forty billion American

should

dollars which is given as a present and
that £ p will

}not be returned . ..

Probability of Hash Collisions

By the birthday paradox, there is a high probability that there is some pair of messages
M; and M’ such that H(M;) = H(M}).

Both messages have the same signature.

B can claim in court that A signed on M}.

Alternatively, A can choose such two messages, sign one of them, and later claim in
court that she signed the other message.

8.3 Merkle-Damgard Construction

Hash Functions

Most practical hash functions make use of the Merkle-Damgard construction which
divides the message M into fixed-length blocks My, M>, etc., pads the last block and
appends the message length to the last block.

The resultant last block (after all paddings) is denoted by M,,.

Then, the hash function applies a collision-free function H on each of the blocks se-
quentially:

T
‘ | | Message ‘ ‘ | || Length |
1

[ T SRS SN SN NN
-IE‘ -IE ' 'E ‘ - - ~ Output
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The function H takes as input the result of the application of H on the previous block
(or a fixed initial value IV in the first block), and the block itself, and results in a hash
value.

The hash value is an input to the application of H on the next block.

Hash Functions
The result of H on the last block is the hashed value of the message h(M):

ho 1V = a fixed initial value

h = H(h(),Ml)
h; = H(hi1,M;)
hy = H(hnfl 7Mn)
WM) =

If H is collision-free, then 4 is also collision-free.
Hash Functions
Two approaches for the design of hash functions are:
1. To base the function H on a block cipher.
2. To design a special function H, not based on a block cipher.

The first approach was first proposed using DES; however the resulting hash is too
small (64-bit).

e Susceptible to direct birthday attack.
e Also susceptible to “meet-in-the-middle” attack.
More modern block ciphers are suitable for implementing hash functions, but the sec-

ond approach is more popular.

8.4 Commonly Used Hash Functions

Hash Functions
There are a number of widely used hash functions:

e MD2,MD4, MD5 (Rivest).

— Produce 128-bit digests.

— Analysis has uncovered some weaknesses with these.
e SHA-1 (Secure Hash Algorithm).

— Produces 160-bit digests.
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e SHA-2 family (Secure Hash Algorithm).

— SHA-224, SHA-256, SHA-384 and SHA-512.
— These yield digests of sizes 224, 256, 384 and 512 bits respectively.

e SHA-3 (Secure Hash Algorithm).

— KECCAK recently announced as winner of NIST competition.
— Works very differently to SHA-1 and SHA-2.

e RIPEMD, RIPEMD-160 (EU RIPE Project).

— RIPEMD produces 128-bit digests.
— RIPEMD-160 produces 160-bit digests.

MD5
Overview:
e Designed by Ron Rivest
e Latest in a series of MD2, MD4

e Produces a 128-bit hash value

Until recently was the most widely used hash algorithm

e In recent times have both brute-force and cryptanalytic concerns

Specified as Internet standard RFC1321

MD5
Operates as follows:
1. Pad message so its length is 448 mod 512
2. Append a 64-bit length value to message
3. Initialise 4-word (128-bit) MD buffer (A,B,C,D)
4. Process message in 16-word (512-bit) blocks:

e Using 4 rounds of 16 bit operations on message block and buffer

e Add output to buffer input to form new buffer value

5. Output hash value is the final buffer value
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MDS5
Compression function operates as follows:

e Each round has 16 steps of the form:

A =B+ ((B+g(B,C,D)+X[k|+Tli]) <<< s)

e A,B,C,D refer to the 4 words of the buffer, but used in varying permutations

— Note this updates only one word of the buffer
— After 16 steps each word is updated 4 times

e ¢(B,C,D) is a different non-linear function in each round
e T[i] is a constant value derived from sin
MD5
Strength of MD5:
e MDS5 hash is dependent on all message bits
e Rivest claims security is good as can be
e Known attacks are:

— (Berson, 92) attacked any one round using differential cryptanalysis (but
cannot extend)

— (Boer & Bosselaers, 93) found a pseudo-collision (again unable to extend)

— (Dobbertin, 96) created collisions on MD5 compression function (but ini-
tial constants prevent exploit)

e Conclusion is that MDS5 looks vulnerable soon
SHA-1
Overview:

e The Secure Hash Standard was designed by the NSA, following the structure of
Rivest’s MD4 and MDS5.

e The first standard was SHA (now called SHA-0).

o It was later changed slightly to SHA-1, due to some unknown weakness found
by the NSA.

e US standard for use with DSA signature scheme (FIPS 180-1 1995, also Internet
RFC3174)

e Produces 160-bit hash values
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SHA-1
Operates as follows:

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301, e fcdab89,98badc fe, 10325476, c3d2e1 f0)
4. Process message in 16-word (512-bit) chunks:

e Expand 16 words into 80 words by mixing and shifting
e Use 4 rounds of 20 bit operations on message block and buffer

e Add output to input to form new buffer value

5. Output hash value is the final buffer value

SHA-1: The Function H
Compression function operates as follows:

e Each round has 20 steps which replaces the 5 buffer words (A, B,C,D, E) with:

(E+f(t,B,C,D)+ (A << 5)+ W, +K;),A, (B << 30),C,D)

e ¢ is the step number

f(¢,B,C,D) is nonlinear function for round

W; is derived from the message block

e K; is a constant value derived from sin

SHA-1 versus MD5

e Brute force attack is harder (160 versus 128 bits for MD5)

e Not vulnerable to any other known attacks (compared to MD4/5)

A little slower than MDS5 (80 versus 64 steps)

Both designed as simple and compact

e Optimised for big endian CPUs (versus MDS5 which is optimised for little endian
CPUs)
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The SHA-2 Family
Overview:

e NIST have issued a revision FIPS 180-2

e Adds 3 additional hash algorithms: SHA-256, SHA-384, SHA-512

Designed for compatibility with increased security provided by the AES cipher

Structure and detail is similar to SHA-1

Hence analysis should be similar

RIPEMD-160
Overview:

e RIPEMD-160 was developed in Europe as part of RIPE project in 1996

e By researchers involved in attacks on MD4/5

Initial proposal strengthened following analysis to become RIPEMD-160
Somewhat similar to MD5/SHA

Uses 2 parallel lines of 5 rounds of 16 steps

e Creates a 160-bit hash value

Slower, but probably more secure, than SHA-1

RIPEMD-160
Operates as follows:

1. Pad message so its length is 448 mod 512

2. Append a 64-bit length value to message

3. Initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301, e fcdab89,98badc fe, 10325476, c3d2e1 f0)
4. Process message in 16-word (512-bit) chunks:

e Use 10 rounds of 16 bit operations on message block and buffer in 2 parallel
lines of 5

e Add output to input to form new buffer value

5. Output hash value is the final buffer value
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RIPEMD-160 versus MD5 and SHA-1

e Brute force attack harder (160 bits like SHA-1 versus 128 bits for MDS5)

e Not vulnerable to known attacks (like SHA-1), though stronger (compared to
MD4/5)

e Slower than MD5 (more steps)
e All designed as simple and compact

e SHA-1 optimised for big endian CPUs versus RIPEMD-160 and MD5 optimised
for little endian CPUs
SHA-3 (Keccak)

Overview:

e Alternate, different hash function to MD5, SHA-0 and SHA-1

Design : block permutation + sponge construction

Not meant to replace SHA-2
o Efficient hardware implementation.
e Sponge construction:

— Message blocks XORed with the state which is then permuted (one-way
one-to-one mapping)

— State is 5 x 5 matrix with 64 bit words = 1600 bits

— Reduced versions with words of 32, 16, 8,4,2 or 1 bit

SHA-3 (Keccak)
Block permutation:

e Defined for w = 2/ bit (w=64, [= 6 for SHA-3)

e State =5 x 5 x w bits array: notation: ali, j,k] is the bit with index (i X 5+ j) x
w+k

e Block permutation function = 12+ 2 x [ iterations of 5 subrounds (f =to)omo
po0):
— 0: xor each of the 5 x w columns of 5 bits parity of its two neighbours
— p: bitwise rotate each of the 25 words by a different number, except a[0][0]
— m: Permute the 25 words in a fixed pattern
— x: Bitwise combine along rows

— 1: xor a round constant into one word of the state.
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SHA-3 (Keccak)
Sponge construction = absorption + squeeze

e To hash variable-length messages by r bits blocks
e Absorption:

— The r input bits are XORed with the r leading bits of the state
— Block function f is applied

e Squeeze:

— r first bits of the states produced as outputs

— Block permutation applied if additional output required

Cryptanalysis of Hash Functions
Recall differential cryptanalysis of block ciphers:

e Look at difference of inputs and difference of outputs after each round.

e Never have different inputs producing same outputs.
In hash functions, output is shorter than input:

e There are different inputs which do produce the same outputs.

e Need to find these inputs.

Using the Merkle-Damgard construction, we need to find messages which produce
the same value for the chaining variable /; with high probability, and set all of the
remaining blocks to be the same.

8.5 Applications of Hash Functions

Applications of Hash Functions
Applications of hash functions:

e Message authentication: used to check if a message has been modified.
e Digital signatures: encrypt digest with private key.

e Password storage: digest of password is compared with that in the storage; hack-
ers can not get password from storage.

e Key generation: key can be generated from digest of pass-phrase; can be made
computationally expensive to prevent brute-force attacks.

e Pseudorandom number generation: iterated hashing of a seed value.

e Intrusion detection and virus detection: keep and check hash of files on system
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Information Security
Modern cryptography deals with more than just the encryption of data.
It also provides primitives to counteract active attacks on the communication channel.

e Confidentiality (only Alice and Bob can understand the communication)

o Integrity (Alice and Bob have assurance that the communication has not been
tampered with)

o Authenticity (Alice and Bob have assurance about the origin of the communica-

tion)

Data Integrity

Encryption provides confidentiality.

Encryption does not necessarily provide integrity of data.
Counterexamples:

e Changing order in ECB mode.
e Encryption of a compressed file, i.e. without redundancy.
e Encryption of a random key.
Use cryptographic function to get a check-value and send it with data. Two types:
e Manipulation Detection Codes (MDC).
o Message Authentication Codes (MAC).
Manipulation Detection Code (MDC)
MDC: hash function without key.

The MDC is concatenated with the data and then the combination is encrypted/signed
(to stop tampering with the MDC). MDC = e (m||h(m)), where:

e ¢ is the encryption function.
e [ is the secret key.

h is the hash function.

e m is the message.

|| denotes concatenation of data items.
Two types of MDC:
e MDCs based on block ciphers.

e Customised hash functions.
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Manipulation Detection Code (MDC)
Most MDCs are constructed as iterated hash functions.

Hy =1V x H, Ty H> T3

! L I
f f f

H;
9
H

Compression/hash function f.

Output transformation g.

Unambiguous padding needed if length is not multiple of block length.

Message Authentication Code (MAC)

MAC: hash function with secret key.
Where dips the rocky Where dips the rocky
highland of Sleuth Wood highland of Sleuth Wood
in the lake, There lies a in the lake, There lies a
leafy island where flapping leafy island where flapping
herons wake the drowsy ) herons wake the drowsy
water-rats; there we've hid water-rats; there we've hid
our faery vats, full of berries our faery vats, full of berries
and of reddest stolen cher- and of reddest stolen cher-
ries. Come away, o human ries. Come away, o human
child! To the waters child! To the waters

\\ l \\ :
K 1 K ;
239215682364 239215682364
: 239215682364 =7

Message Authentication Code (MAC)
MAC = hy(m), where:

e / is the hash function.

e [ is the secret key.
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e m is the message.

Transmit m||[MAC, where || denotes concatenation of data items.

Description of hash function is public.

Maps string of arbitrary length to string of fixed length (32-160 bits).

Computing hy(m) easy given m and k.

Computing i (m) given m, but not k should be very difficult, even if a large number of
pairs {m;, h;(m;)} are known.

MAC Mechanisms

There are various types of MAC scheme:
e MAC:s based on block ciphers in CBC mode.
e MACs based on MDCs.
o Customized MACs.

Best known and most widely used by far are the CBC-MAC:s.
CBC-MAC:s are the subject of various international standards:

e US Banking standards ANSIX9.9, ANSIX9.19.
o Specify CBC-MAC:s, date back to early 1980s.
o The ISO version is ISO 8731-1: 1987.
Above standards specify DES in CBC mode to produce a MAC.

CBC-MAC
Given an n-bit block cipher, one constructs an m-bit MAC (m < n) as:

e Encipher the blocks using CBC mode (with padding if necessary).
e Last block is the MAC, after optional post-processing and truncation if m < n.
If the n-bit data blocks are my,mo,...,m, then the MAC is computed by:

e Putl; =mj and O; = ¢ (I)).

Perform the following fori =2,3,...,¢:

- Li=m®0; .
- O0i=ei(1).

e O, is then subject to an optional post-processing.

e The result is truncated to m bits to give the final MAC.
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CBC-MAC
ma ma myq
@ &
l , |
|
er €k | €L
|

L ;

Optional

|

MAC

CBC-MAC: Padding
There are three possible padding methods proposed in the standards:

e Method 1: Add as many zeroes as necessary to make a whole number of blocks.

e Method 2: Add a single one followed by as many zeroes as necessary to make a
whole number of blocks.

e Method 3: As for method 1, but also add an extra block containing the length of
the unpadded message.

The first method does not allow detection of additional or deletion of trailing zeroes.

e Unless message length is known by the recipient.

CBC-MAC: Post-Processing
Two specified optional post-processes:

e Choose a key k| and compute:
0y = ex(dy, (0g))

e Choose a key k| and compute:

01] - ek] (Oq)

The optional process can make it more difficult for a cryptanalyst to do an exhaustive
key search for the key k.
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MAC:s based on MDCs
Given a key k, how do you transform a MDC 7 into a MAC?
Secret prefix method: MAC,(m) = h(k||m)

e Can compute MACy(m||m’) = h(k||m||m’) without knowing k.
Secret suffix method: MACy(m) = h(m||k)

e Off-line attacks possible to find a collision in the hash function.
Envelope method with padding: MACy(m) = h(k||p||m||k)

e pis a string used to pad k to the length of one block.
None of these is very secure, better to use HMAC:

HMACK(m) = h(K||p1||(K] p2Im))

with pp, p» fixed strings used to pad k to full block.

MAC:s versus MDCs
Data integrity without confidentiality:

e MAC: compute MACy(m) and send m||MACy(m).

e MDC: send m and compute MDC (m), which needs to be sent over an authenti-
cated channel.

Data integrity with confidentiality:
e MAC: needs two different keys k| and k.
— One for encryption and one for MAC.
- Compute ¢ = ¢, (m) and then appends MACy, (¢).
e MDC: only needs one key & for encryption.
— Compute MDC(m) and send ¢ = ey (m||MDC(m)).

Password Storage
Storing unencrypted passwords is obviously insecure and susceptible to attack.
Can store instead the digest of passwords.

e They need to be easy to remember.
e They should not be subject to a dictionary attack.

Can make use of a salt, which is a known random value that is combined with the
password before applying the hash.

e The salt is stored alongside the digest in the password file: (s, H(p||s)).

e By using a salt, constructing a table of possible digests will be difficult, since
there will be many possible for each password.

e An attacker will thus be limited to searching through a table of passwords and
computing the digest for the salt that has been used.
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Key Generation
We can generate a key at random.

e Most cryptographic APIs have facilities to generate keys at random.
e These facilities normally avoid weak keys.
We can also derive a key from a passphrase by applying a hash and using a salt.

e There are a number of standards for deriving a symmetric key from a passphrase
e.g. PKCS#5.

This key generation may also require a number of iterations of the hash function.
e This makes the computation of the key less efficient.
e An attacker performing an exhaustive search will therefore require more com-

puting resources or more time.

Pseudorandom Number Generation
Hash functions can be used to build a computationally-secure pseudo-random number
generator as follows:

o First we seed the PRNG with some random data S.
e This is then hashed to produce the first internal state So = H(S).

e By repeatedly calling H we can generate a sequence of internal states S1,52,...,
using S; = H(S;—1).

e From each state S; we can extract bits to produce a random number N;.

e This PRNG is secure if the sequence of values S, Sy, S1,. .. is kept secret and the
number of bits of S; used to compute ; is relatively small.
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