
Digital Signatures

Good properties of hand-written signatures:

1. Signature is authentic.
2. Signature is unforgeable.
3. Signature is not reusable (it is a part of the document)
4. Signed document is unalterable.
5. Signature cannot be repudiated.

What problems do we want into if we want to achieve all this in 
digital signatures ?



Signatures Scheme

To sign: use a private signing algorithm
To verify: use a public verification algorithm

In particular:

Alice wants to sign message m. She computes the signature of 
m (let’s call it y) and sends the signed message (m,y) to Bob.

Bob gets (m,y), runs the verification algorithm on it. The 
algorithm returns “true” iff y is Alice’s signature of m.

How can we do this ?



Signatures Scheme

Some public-key cryptosystems can be used for digital 
signatures, for example RSA, Rabin, and ElGamal:

The basic protocol:

1. Alice encrypts the document with her private key.

2. Alice sends the signed document to Bob.

3. Bob decrypts the document with Alice’s public key.



RSA Signature Scheme

1. Alice chooses secret odd primes p,q and computes n=pq.
2. Alice chooses eA with gcd(eA,Φ(n))=1.
3. Alice computes dA = eA-1 mod Φ(n).
4. Alice’s signature is y = md mod n.
5. The signed message is (m,y).
6. Bob can verify the signature by calculating z = ye mod n. 

(The signature is valid iff m=z).

Potential issues:

- Eve could (y1
e mod n, y1) to Bob. Is this a problem ?
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RSA Signature Scheme

1. Alice chooses secret odd primes p,q and computes n=pq.
2. Alice chooses eA with gcd(eA,Φ(n))=1.
3. Alice computes dA = eA-1 mod Φ(n).
4. Alice’s signature is y = md mod n.
5. The signed message is (m,y).
6. Bob can verify the signature by calculating z = ye mod n. 

(The signature is valid iff m=z).

Potential issues:

- Eve could (y1
e mod n, y1) to Bob. Is this a problem ?

- Bob can reuse the signed message. When would this be a 
problem ?
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Attacks on Signature Schemes

Typical types of attacks for cryptosystems:
ciphertext-only, known-plaintext, chosen-plaintext, and 
chosen-ciphertext.

Typical types of attacks for signature schemes:

- key-only

- known-message

- chosen-message



Attacks on Signature Schemes

Additionally, Eve can have different goals:

- total break: Eve determines Alice’s signing key/function.

- selective forgery: Eve is able (with nonnegligible probability) 
to create a valid Alice-signature on a message chosen by 
someone else.

- existential forgery: Eve is able to create a valid signature 
for at least one new message.



Some Breaks for RSA Signatures

We mentioned Eve sending (ye mod n, y) to Bob.
What type of attack is this ?
What goal does it achieve ?

If Eve has two signed messages (m1, m1
d mod n) and            

(m2, m2
d mod n), then Eve can create a valid signature           

on m1m2 mod n. How ?

What type of attack is this ?
What goal does it achieve ?

Eve can also do a selective forgery using a chosen message 
attack. How ?
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Blind Signatures

Bob wants to time-stamp his document by Alice, without 
revealing its content to Alice.

1. Alice chooses secret odd primes p, q and computes n = pq.
2. Alice chooses e with gcd(e, Φ(n)) = 1.
3. Alice computes d = e−1 mod Φ(n).
4. Bob chooses a random integer k (mod n) with gcd(k, n) = 1, 

and computes t = kem mod n, where m is the message.
5. Alice signs t, by computing s = td mod n. She sends s to Bob.
6. Bob computes k−1s mod n. This is the signed message md. 

Why ?

This protocol is good for Bob but not very good for Alice since 
she does not know what she is signing !



Insecurity of RSA against Chosen-Ciphertext

Let’s revisit this attack (see earlier slides).
Given a ciphertext y, we can choose a ciphertext ŷ≠y such that 
knowledge of the decryption of ŷ allows us to decrypt y.

Moral of the story:



Combining Signatures with Encryption

If Alice wants to both sign and encrypt a message for Bob:

Either:
Alice signs her message, then encrypts the signed message. 
I.e. Alice sends eBob(m,sigAlice(m)), where eBob is Bob’s (public) 
encryption function and sigAlice is Alice’s (private) signing 
function.

Or:
Alice encrypts the message, then signs the encrypted 
message. I.e. Alice sends (eBob(m),sigAlice(eBob(m)).

Which way is better ?



Hash Functions

Signature schemes: typically only for short messages (for the 
RSA signature scheme, messages need to be from Zn).

What to do with longer messages ?

Naïve solution:



Cryptographic Hash Functions

Using a very fast public cryptographic hash function h, we can 
create a message digest (or hash) of a specified size (e.g. 160 
bits is popular).

What does Alice do ?

How does Bob verify the signature ?



Cryptographic Hash Functions

Other uses of cryptographic hash functions:

- Data integrity

- Time stamping a message while keeping the message secret



Signed Hash Attacks

We have to make sure that h satisfies certain properties, so 
that we don’t weaken the security of the signature scheme.

Attack 1:
Eve finds two messages m1 ≠ m2 such that h(m1) = h(m2). Eve 
gives m1 to Alice, and persuades her to sign h(m1), obtaining y. 
Then (m2, y) is a valid signed message.

To prevent this attack, we require that h is collision resistant
(or strongly collision-free), i.e., it is computationally infeasible 
to find m1 ≠ m2 such that h(m1) = h(m2).



Signed Hash Attacks

We have to make sure that h satisfies certain properties, so 
that we don’t weaken the security of the signature scheme.

Attack 2:
Suppose Eve can forge signatures on random message digests. 
For example, in RSA, z is the signature of ze . If Eve can find 
m such that ze = h(m), then (m, z) is a valid signed message.

To prevent this attack, we require that h is oneway (a.k.a. 
preimage resistant), i.e., given y, it is computationally 
infeasible to find m such that h(m) = y.
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Size of Hashes

The birthday paradox:

What does it have to do with hashing ?

The birthday paradox in general:

Moral of the story:



Creating Hash Functions

Theoretically appealing option:
creating hash functions from oneway functions, e.g. the 
Discrete Log (coming soon)

In practice (since the above is too slow):
There are several professional strength hash functions 
available. E.g., MD4, MD5, and SHA.



DSA (Digital Signature Algorithm)

In 1991, NIST proposed DSA for use in their Digital Signature 
Standard (DSS). It was adopted in 1994.

There were several criticisms against DSA:
1. DSA cannot be used for encryption or key distribution.
2. DSA was developed by the NSA, and there may be a 
trapdoor in the algorithm.
3. DSA is slower than RSA.
4. RSA is the de facto standard.
5. The DSA selection process was not public.
6. The key size (512 bits) is too small. In response to this 
criticism, NIST made the key size variable, from 512 to 1024 
bits.



Discrete Log

DSA gets its security from the difficulty of computing the 
discrete log.

Discrete Log problem:
Fix a prime p. Let α and β be nonnegative integers mod p,     
the goal is to find the smallest natural number x such that     
β ≡ αx (mod p). The number x is denoted by Lα(β): the discrete 
log of β with respect to α.

Often, α is taken to be a primitive root mod p. α is a primitive 
root mod p if and only if {i mod p | 0 ≤ i ≤ p−2} = {1, 2, …, p−1}.

For example:
- 3 is a primitive root mod 7
- 2 is a primitive root mod 13, but 3 is not



Discrete Log

If α is a primitive root mod p, then Lα(β) exists for all β ≠ 0 
(mod p).

If α is not a primitive root mod p, then Lα(β) may not exist. 
For example, the equation 3x ≡ 2 (mod 13) does not have a 
solution, so L3(2) does not exist.

There are Φ(p−1) primitive roots mod p.

Like factoring, the discrete logarithm problem is probably 
difficult.

Recall: the ElGamal public-key cryptosystem is based on 
discrete log.


