
FINITE FIELDS

KEITH CONRAD

This handout discusses finite fields: how to construct them, properties of elements in a
finite field, and relations between different finite fields. We write Z/(p) and Fp interchange-
ably for the field of size p.

Here is an executive summary of the main results.

• Every finite field has prime power order.
• For every prime power, there is a finite field of that order.
• For a prime p and positive integer n, there is an irreducible π(x) of degree n in
Fp[x], and Fp[x]/(π(x)) is a field of order pn.
• Any two finite fields of the same size are isomorphic (usually not in just one way).

• If [Fp(α) : Fp] = d, the Fp-conjugates of α are α, αp, αp
2
, . . . , αp

d−1
.

• Every finite extension of Fp is a Galois extension whose Galois group over Fp is
generated by the pth power map.

1. Construction

Theorem 1.1. For a prime p and a monic irreducible π(x) in Fp[x] of degree n, the ring
Fp[x]/(π(x)) is a field of order pn.

Proof. The cosets mod π(x) are represented by remainders

c0 + c1x+ · · ·+ cn−1x
n−1, ci ∈ Fp,

and there are pn of these. Since the modulus π(x) is irreducible, the ring Fp[x]/(π(x)) is a
field using the same proof that Z/(m) is a field when m is prime. �

Example 1.2. Two fields of order 8 are F2[x]/(x3 + x+ 1) and F2[x]/(x3 + x2 + 1).

Example 1.3. Two fields of order 9 are F3[x]/(x2 + 1) and F3[x]/(x2 + x+ 2).

Example 1.4. The polynomial x3 − 2 is irreducible in F7[x], so F7[x]/(x3 − 2) is a field of
order 73 = 343.

Warning. Do not try to create a field of order 8 as Z/(8). That is not a field. Similarly,
Z/(9) is not a field. The ring Z/(m) is a field only when m is a prime number. In order to
create fields of non-prime size we must do something other than look at Z/(m).

We will see that every finite field is isomorphic to a field of the form Fp[x]/(π(x)), so
these polynomial constructions give us working models of any finite field. However, not
every finite field is literally of the form Fp[x]/(π(x)). For instance, Z[

√
2]/(3) is another

field of size 9 (which is isomorphic to F3[x]/(x2 − 2) = F3[x]/(x2 + 1)).

Theorem 1.5. Any finite field has prime power order.
1
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Proof. For every commutative ring R there is a unique ring homomorphism Z → R, given
by

m 7→


1 + 1 + · · ·+ 1︸ ︷︷ ︸

m times

, if m ≥ 0,

−(1 + 1 + · · ·+ 1︸ ︷︷ ︸
|m| times

), if m < 0.

We apply this to the case when R = F is a finite field. The kernel of Z → F is nonzero
since Z is infinite and F is finite. Write the kernel as (m) = mZ for an integer m > 0, so
Z/(m) embeds as a subring of F . Any subring of a field is a domain, so m has to be a
prime number, say m = p. Therefore there is an embedding Z/(p) ↪→ F . Viewing F as a
vector space over Z/(p), it is finite-dimensional since F is finite. Letting n = dimZ/(p)(F )
and picking a basis {e1, . . . , en} for F over Z/(p), elements of F can be written uniquely as

c1e1 + · · ·+ cnen, ci ∈ Z/(p).

Each coefficient has p choices, so #F = pn. �

Lemma 1.6. If F is a finite field, the group F× is cyclic.

Proof. Let q = #F , so #F× = q − 1. Let m be the maximal order of the elements of the
group F×, so m | (q − 1) by Lagrange’s theorem. We will show m = q − 1.

It is a theorem from group theory (see the appendix) that in any finite abelian group,
all orders of elements divide the maximal order of the elements1, so every t in F× satisfies
tm = 1. Therefore all numbers in F× are roots of the polynomial xm − 1. The number of
roots of a polynomial over a field is at most the degree of the polynomial, so q − 1 ≤ m.

Since m is the order of some element in F×, we have m | (q−1), so m ≤ q−1. Therefore
m = q − 1, so some element of F× has order q − 1. �

Example 1.7. In the field F3[x]/(x2 +1), the nonzero numbers are a group of order 8. The
powers of x are

x, x2 = −1 = 2, x3 = 2x, x4 = 2x2 = −2 = 1,

so x is not a generator. But x + 1 is a generator: its successive powers are in the table
below.

k 1 2 3 4 5 6 7 8

xk x+ 1 2x 2x+ 1 2 2x+ 2 x x+ 2 1

Example 1.8. For every prime p, the group (Z/(p))× is cyclic: there is an a 6≡ 0 mod p
such that {a, a2, a3, . . . , ap−1 mod p} = (Z/(p))×. There is no constructive proof of this,
and in fact there is no universally applicable algorithm that runs substantially faster than
trying a = 2, 3, . . . until a generator is found.

Remark 1.9. For a finite field F , the multiplicative group F× is cyclic but the additive
group of F is usually not cyclic. When F contains Fp, since p = 0 in Fp every nonzero
element of F has additive order p, so F is not additively cyclic unless #F is prime.

Theorem 1.10. Every finite field is isomorphic to Fp[x]/(π(x)) for some prime p and some
monic irreducible π(x) in Fp[x].

1In a nonabelian finite group, all orders of elements don’t have to divide the maximal order, e.g., in S3

the orders of elements are 1, 2, and 3.
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Proof. Let F be a finite field. By Theorem 1.5, F has order pn for some prime p and positive
integer n, and there is a field embedding Fp ↪→ F .

The group F× is cyclic by Lemma 1.6. Let γ be a generator of F×. Evaluation at γ,
namely f(x) 7→ f(γ), is a ring homomorphism evγ : Fp[x] → F that fixes Fp. Since every
number in F is 0 or a power of γ, evγ is onto (0 = evγ(0) and γr = evγ(xr) for any r ≥ 0).
Therefore Fp[x]/ ker evγ ∼= F . The kernel of evγ is a maximal ideal in Fp[x], so it must be
(π(x)) for some monic irreducible π(x) in Fp[x]. �

Fields of size 9 that are of the form Fp[x]/(π(x)) need p = 3 and deg π(x) = 2. The
monic irreducible quadratics in F3[x] are x2 + 1, x2 + x+ 2, and x2 + 2x+ 2. In

F3[x]/(x2 + 1), F3[x]/(x2 + x+ 2), F3[x]/(x2 + 2x+ 2),

x is not a generator of the nonzero elements in the first field but is a generator of the nonzero
elements in the second and third fields. So although F3[x]/(x2 + 1) is the simplest choice
among these three examples, it’s not the one that would come out of the proof of Theorem
1.10 when we look for a model of fields of order 9 as F3[x]/(π(x)).

Theorem 1.10 does not assure us fields of all prime power orders exist. It only tells us
that if a field of order pn exists then it is isomorphic to Fp[x]/(π(x)) for some irreducible
π(x) of degree n in Fp[x]. Why is there an irreducible of each degree in Fp[x]? In the next
section we will show a field of any prime power order does exist and there is an irreducible
in Fp[x] of each positive degree.

2. Finite fields as splitting fields

We can describe any finite field as a splitting field of a polynomial depending only on the
size of the field.

Lemma 2.1. A field of prime power order pn is a splitting field over Fp of xp
n − x.

Proof. Let F be a field of order pn. From the proof of Theorem 1.5, F contains a subfield
isomorphic to Z/(p) = Fp. Explicitly, the subring of F generated by 1 is a field of order p.

Every t ∈ F satisfies tp
n

= t: if t 6= 0 then tp
n−1 = 1 since F× = F−{0} is a multiplicative

group of order pn−1, and then multiplying through by t gives us tp
n

= t, which is also true
when t = 0. The polynomial xp

n − x has every element of F as a root, so F is a splitting
field of xp

n − x over the field Fp. �

Theorem 2.2. For every prime power pn, a field of order pn exists.

Proof. Taking our cue from the statement of Lemma 2.1, let F be a field extension of Fp
over which xp

n − x splits completely. General theorems from field theory guarantee there
is such a field. Inside F , the roots of xp

n − x form the set

S = {t ∈ F : tp
n

= t}.
This set has size pn since the polynomial xp

n−x is separable: (xp
n−x)′ = pnxp

n−1−1 = −1
since p = 0 in F , so xp

n−x has no roots in common with its derivative. It splits completely
over F and has degree pn, so it has pn roots in F .

We will show S is a subfield of F . It contains 1 and is easily closed under multiplication
and (for nonzero solutions) inversion. It remains to show S is an additive group. Since
p = 0 in F , (a+ b)p = ap+ bp for all a and b in F (the intermediate terms in (a+ b)p coming
from the binomial theorem have integral coefficients

(
p
k

)
, which are all multiples of p and

thus vanish in F ). Therefore the pth power map t 7→ tp on F is additive. The map t 7→ tp
n
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is also additive since it’s the n-fold composite of t 7→ tp with itself and the composition
of homomorphisms is a homomorphism.2 The fixed points of an additive map are a group
under addition, so S is a group under addition. Therefore S is a field of order pn. �

Corollary 2.3. For every prime p and positive integer n, there is a monic irreducible
of degree n in Fp[x], and moreover π(x) can be chosen so that every nonzero element of
Fp[x]/(π(x)) is congruent to a power of x.

Proof. By Theorem 2.2, a field F of order pn exists. By Theorem 1.10, the existence of
an abstract field of order pn implies the existence of a monic irreducible π(x) in Fp[x] of
degree n, and from the proof of Theorem 1.10 x mod π(x) generates the nonzero elements
of Fp[x]/(π(x)) since the isomorphism identifies x mod π(x) with a generator of F×. �

It’s worth appreciating the order in the logic behind Theorem 2.2 and its corollary: to
show we can construct a field of order pn as Fp[x]/(π(x)) where deg π(x) = n, the way we
showed a π(x) of degree n exists is by first constructing an abstract field F of order pn

(using the splitting field construction) and then proving F can be made isomorphic to an
Fp[x]/(π(x)).

Remark 2.4. There is no simple formula for an irreducible of every degree in Fp[x]. For

example, binomial polynomials xn−a are reducible when p | n. Trinomials xn+axk+b with
a, b ∈ F×p and 0 < k < n are often irreducible, but in some degrees there are no irreducible
trinomials: none in F2[x] of degree 8 or 13, in F3[x] of degree 49 or 57, in F5[x] of degree
35 or 70, or in F7[x] of degree 124 or 163.

Theorem 2.5. Any irreducible π(x) in Fp[x] of degree n divides xp
n − x and is separable.

Proof. The field Fp[x]/(π(x)) has order pn, so tp
n

= t for all t in Fp[x]/(π(x)) (see the proof
of Lemma 2.1). In particular, xp

n ≡ x mod π(x), so π(x) | (xpn−x) in Fp[x]. We saw in the
proof of Theorem 2.2 that xp

n − x is separable in Fp[x], so its factor π(x) is separable. �

Example 2.6. In F2[x], the irreducible factorization of x2
n−x for n = 1, 2, 3, 4 is as follows.

x2 − x = x(x− 1),

x4 − x = x(x− 1)(x2 + x+ 1),

x8 − x = x(x− 1)(x3 + x+ 1)(x3 + x2 + 1),

x16 − x = x(x− 1)(x2 + x+ 1)(x4 + x+ 1)(x4 + x3 + 1)(x4 + x3 + x2 + x+ 1).

In each case the irreducibles of degree n appear in the factorization of x2
n − x, which

Theorem 2.5 guarantees must happen. That each factor occurs just once reflects the fact
that xp

n − x is separable. There are irreducible factors of xp
n − x with degree less than n,

if n > 1; the irreducible factors of xp
n − x in Fp[x] turn out (Lemma 3.3 below) to be the

irreducibles in Fp[x] of degree dividing n and each such factor appears once.

We write Fpn for a finite field of order pn. Features to keep in mind are

• it contains a unique subfield isomorphic to Fp (namely the subfield generated by 1),
• [Fpn : Fp] = n by the proof of Theorem 1.5,
• it is a splitting field of xp

n − x over Fp by the proof of Theorem 2.2.

2Alternatively, additivity of t 7→ tp
n

follows from the binomial coefficients
(
pn

k

)
being divisible by p for

1 ≤ k ≤ pn − 1. In general b
(
a
b

)
= a

(
a−1
b−1

)
for 1 ≤ b ≤ a, so k

(
pn

k

)
= pn

(
pn−1
k−1

)
when 1 ≤ k ≤ pn − 1. Thus

k
(
pn

k

)
is divisible by pn and the first factor k is not divisible by pn, so

(
pn

k

)
is divisible by p.
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Although xp
n −x has degree pn, its splitting field over Fp has degree n, not pn. That is not

weird, because xp
n − x is reducible (see Example 2.6). The situation is similar to xm − 1,

which for m > 1 is reducible and its splitting field over Q has degree less than m.

Theorem 2.7. Any finite fields of the same size are isomorphic.

Proof. A finite field has prime power size, say pn, and by Lemma 2.1, it is a splitting field
of xp

n − x over Fp. Any two splitting fields of a fixed polynomial over Fp are isomorphic,
so any two fields of order pn are isomorphic: they are splitting fields of xp

n −x over Fp. �

The analogous theorem for finite groups and finite rings is false: having the same size
does not usually imply isomorphism. For instance, Z/(4) and Z/(2)×Z/(2) both have order
4 and they are nonisomorphic as additive groups (one is cyclic and the other is not) and
also as commutative rings (one has a nonzero element squaring to 0 and other does not).

Theorem 2.8. A subfield of Fpn has order pd where d | n, and there is one such subfield
for each d.

Proof. Let F be a field with Fp ⊂ F ⊂ Fpn . Set d = [F : Fp], so d divides [Fpn : Fp] = n.

We will describe F in a way that only depends on #F = pd.

Since F× has order pd − 1, for any t ∈ F× we have tp
d−1 = 1, so tp

d
= t, and that holds

even for t = 0. The polynomial xp
d − x has at most pd roots in Fpn , and since F is a set of

pd different roots of it,

F = {t ∈ Fpn : tp
d

= t}.
This shows there is at most one subfield of order pd in Fpn , since the right side is completely

determined as a subset of Fpn from knowing pd.

To prove for each d dividing n there is a subfield of Fpn with order pd, we turn things

around and consider {t ∈ Fpn : tp
d

= t}. It is a field by the same proof that S is a field in

the proof of Theorem 2.2. To show its size is pd we want to show xp
d − x has pd roots in

Fpn . We’ll do this in two ways. First, d | n⇒ (pd− 1) | (pn− 1)⇒ xp
d−1− 1 | xpn−1− 1⇒

xp
d − x | xpn − x, so since xp

n − x splits with distinct roots in Fpn [x] so does its factor

xp
d − x. Second, d | n⇒ (pd − 1) | (pn − 1) and F×pn is cyclic of order pn − 1, so it contains

pd − 1 solutions to tp
d−1 = 1. Along with 0 we get pd solutions in Fpn to tp

d
= t. �

Example 2.9. In the diagram below are the subfields of Fp8 and Fp12 .

Fp8

2

Fp12

23

Fp4

2

Fp4

2

Fp6

3

2

Fp2

2

Fp2

2

Fp3

3

Fp Fp

These resemble the lattice of divisors of 8 and divisors of 12. Even though pk divides p12

for k ≤ 12, that does not mean Fpk is a subfield of Fp12 for all k ≤ 12: the only possible
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Fpk that can lie in Fp12 are those for which [Fpk : Fp] divides [Fp12 : Fp], which means k

divides 12. Theorem 2.8 guarantees they all occur as solutions to tp
k

= t in Fp12 when k is
a factor of 12.

Example 2.10. One field of order 16 = 24 is F2[x]/(x4+x+1). All elements satisfy t16 = t.
The solutions to t2 = t are the subfield {0, 1} of order 2 and the solutions to t4 = t are the
subfield {0, 1, x2 + x, x2 + x+ 1} of order 4.

3. Describing Fp-conjugates

Two elements in a finite field are called Fp-conjugate if they share the same minimal
polynomial over Fp. We will show, after some lemmas about polynomials over Fp, that all
Fp-conjugates can be obtained from each other by successively taking pth powers. A precise
statement is in Theorem 3.4.

Lemma 3.1. For every f(x) ∈ Fp[x], f(x)p
m

= f(xp
m

) for m ≥ 0.

Proof. The case m = 0 is obvious, and it suffices by induction to do the case m = 1.
In any ring of characteristic p, the pth power map is additive. For a polynomial f(x) =

cnx
n + · · ·+ c1x+ c0 in the ring Fp[x], we have

f(x)p = (cnx
n + · · ·+ c1x+ c0)

p = cpnx
pn + · · ·+ cp1x

p + cp0.

Every c ∈ Fp satisfies cp = c, so

f(x)p = cnx
pn + · · ·+ c1x

p + c0 = f(xp).

�

Example 3.2. In F5[x], (2x4 + x2 + 3)5 = 2x20 + x10 + 3.

Lemma 3.3. Let π(x) be irreducible of degree d in Fp[x]. For n ≥ 0, π(x) | (xpn − x)⇐⇒
d | n.

Proof. To prove (⇐=), write n = kd. Starting with xp
d ≡ x mod π(x) (from Theorem 2.5)

and applying the pd-th power to both sides k times, we obtain

x ≡ xpd ≡ xp2d ≡ · · · ≡ xpkd mod π(x).

Thus π(x) | (xpn − x).
We will prove (=⇒) in two ways.
For the first proof we will work in a field Fpn of order pn. Since xp

n −x splits completely
in Fpn [x] and π(x) is a factor of xp

n − x, π(x) splits completely in Fpn [x], so π(x) has a

root in Fpn , say α. Then Fpn has the subfield Fp(α), which has order pd. Since [Fp(α) : Fp]
divides [Fpn : Fp], we get d | n.

The second proof uses congruences, not splitting fields. Our divisibility hypothesis says

(3.1) xp
n ≡ x mod π(x)

and we want to conclude d | n. Write n = dq + r with 0 ≤ r < d. We will show r = 0.

We have xp
n

= xp
dqpr = (xp

dq
)p

r
. By (⇐=), xp

dq ≡ x mod π, so xp
n ≡ xp

r
mod π. Thus,

by (3.1),

(3.2) xp
r ≡ x mod π(x).
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This tells us that one particular element of Fp[x]/(π(x)), the class of x, is equal to its
own pr-th power. Let’s extend this property to all elements of Fp[x]/(π(x)). For every
f(x) ∈ Fp[x], f(x)p

r
= f(xp

r
) by Lemma 3.1. Combining with (3.2),

f(x)p
r ≡ f(x) mod π(x).

Therefore, in Fp[x]/(π(x)), the class of f(x) is equal to its own pr-th power. As f(x) is
a general polynomial in Fp[x], we have proved every t ∈ Fp[x]/(π(x)) satisfies tp

r
= t (in

Fp[x]/(π(x))). Recall r is the remainder when n is divided by d.
Consider now the polynomial Xpr −X. When r > 0, this is a nonzero polynomial with

degree pr. We have found pd different roots of this polynomial in the field Fp[x]/(π(x)),

namely every element. Therefore pd ≤ pr, so d ≤ r. But, recalling where r came from,
r < d. This is a contradiction, so r = 0. That proves d | n. �

Theorem 3.4. Let π(x) be irreducible in Fp[x] with degree d and E ⊃ Fp be a field in

which π(x) has a root, say α. Then π(x) has roots α, αp, αp
2
, . . . , αp

d−1
. These d roots are

distinct; more precisely, when i and j are nonnegative, αp
i

= αp
j ⇐⇒ i ≡ j mod d.

Proof. Since π(x)p = π(xp) by Lemma 3.1, we see αp is also a root of π(x), and likewise

αp
2
, αp

3
, and so on by iteration. Once we reach αp

d
we have cycled back to the start:

αp
d

= α by Lemma 3.3: xp
d

= x+ π(x)g(x) for some g(x) ∈ Fp[x], and substitute α for x.

Now we will show αp
i

= αp
j ⇐⇒ i ≡ j mod d, where i, j ≥ 0. We may suppose without

loss of generality that i ≤ j, say j = i+ k with k ≥ 0. Then

αp
i

= αp
j ⇐⇒ αp

i
= (αp

k
)p

i

⇐⇒ (αp
k
)p

i − αpi = 0

⇐⇒ (αp
k − α)p

i
= 0

⇐⇒ αp
k

= α

⇐⇒ π(x) | (xpk − x) in Fp[x]

⇐⇒ d | k by Lemma 3.3

⇐⇒ i ≡ j mod d.

Thus the roots α, αp, . . . , αp
d−1

are distinct. Since π(x) has at most d = deg π roots in any

field, Theorem 3.4 tells us α, αp, . . . , αp
d−1

are a complete set of roots of π(x). �

Example 3.5. The polynomial x3 +x2 + 1 is irreducible in F2[x] since it’s a cubic without
a root in F2. In the field F = F2[y]/(y3 + y2 + 1), one root of x3 + x2 + 1 is y (we should
write this as a coset, like y, but we’ll use y). The other two roots in F are y2 and y4. Let’s
write these in terms of the basis {1, y, y2} of F over F2.

Since y3 + y2 + 1 = 0 in F , we have y3 = y2 + 1 (since −1 = 1), so y4 = y3 + y =
(y2 + 1) + y = y2 + y+ 1. Therefore, the roots of x3 + x2 + 1 in F are y, y2, and y2 + y+ 1.

Example 3.6. The polynomial x3−2 is irreducible in F7[x]. In the field F = F7[y]/(y3−2),
the roots of x3−2 are y, y7, and y49. Let’s simplify these powers using the condition y3 = 2
in F . It implies y7 = (y3)2y = 4y and y49 = (y7)7 = (4y)7 = 47y7 = 4 · 4y = 2y. So the
three roots of x3 − 2 in F are y, 2y, and 4y. This is similar to the formula for the roots of
x3 − 2 in C: 3

√
2, ω 3
√

2, and ω2 3
√

2. In characteristic 7, the numbers 2 and 4 are nontrivial
cube roots of unity, so they are like ω and ω2 in C (notice each is the square of the other).
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Theorem 3.4 says if π(x) ∈ Fp[x] is irreducible and α is a root of π(x) then Fp(α) is a

splitting field of π(x) over Fp. This is quite different over Q: Q( 3
√

2) is not a splitting field
of x3 − 2 over Q. Here is an even more striking contrast between Q and Fp.

Corollary 3.7. Let π1(x) and π2(x) be irreducible of the same degree in Fp[x] and α be a
root of π1(x). Then Fp(α) is a splitting field of π2(x) over Fp.

Proof. Set F = Fp(α) ∼= Fp[x]/(π1(x)), so F has order pn. The polynomial xp
n − x splits

completely over F (Lemma 2.1), and π2(x) | (xpn−x) in Fp[x] (Theorem 2.5), so π2(x) splits
completely over F . Letting β be a root of π2(x) in F , Fp(β) has order pn so F = Fp(β).
Theorem 3.4 implies that F is a splitting field over π2(x) over Fp. �

Example 3.8. Both x3− 2 and x3 +x2 + 6x+ 5 are irreducible over F7. Let α be a root of
x3−2 over F7. In F7(α), x3+x2+6x+5 must have 3 roots. One root is α2+α+2 (found by
searching). Using the relation α3 = 2, the other two roots are (α2 +α+ 2)7 = 2α2 + 4α+ 2
and (α2 + α+ 2)49 = 4α2 + 2α+ 2.

4. Galois groups

Since Fpn is the splitting field over Fp of xp
n − x, which is separable, Fpn/Fp is Galois.

It is a fundamental feature that the Galois group is cyclic, with a canonical generator.

Theorem 4.1. The p-th power map ϕp : t 7→ tp on Fpn generates Gal(Fpn/Fp).

Proof. Any a ∈ Fp satisfies ap = a, so the function ϕp : Fpn → Fpn fixes Fp pointwise. Also
ϕp is a field homomorphism and it is injective (all field homomorphisms are injective), so
ϕp is surjective since Fpn is finite. Therefore ϕp ∈ Gal(Fpn/Fp).

The size of Gal(Fpn/Fp) is [Fpn : Fp] = n. We will show ϕp has order n in this group, so
it generates the Galois group. For r ≥ 1 and t ∈ Fpn , ϕrp(t) = tp

r
. If ϕrp is the identity then

tp
r

= t for all t ∈ Fpn , which can be rewritten as tp
r − t = 0. The polynomial xp

r − x has
degree pr (since r ≥ 1), so it has at most pr roots in Fpn . Thus pn ≤ pr, so n ≤ r. Hence ϕp
has order at least n in Gal(Fpn/Fp), a group of order n, so ϕp generates the Galois group:
every element of Gal(Fpn/Fp) is an iterate of ϕp. �

Galois theory makes Theorem 2.8 follow from Theorem 4.1: an extension with a cyclic
Galois group has its lattice of intermediate fields resemble the lattice of subgroups of a cyclic
group, with the unique subfield of degree d over Fp corresponding to the unique subgroup
of the Galois group with index d. In the diagram below are subfields of Fp12 on the left and
corresponding subgroups of Gal(Fp12/Fp) = 〈ϕp〉 ∼= Z/(12) on the right.

Fp12

23

〈ϕ12
p 〉

3

Fp4

2

Fp6

3

2

〈ϕ4
p〉

2

〈ϕ6
p〉

2

3

Fp2

2

Fp3

3

〈ϕ2
p〉

2

〈ϕ3
p〉

3

2

Fp 〈ϕp〉
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Theorem 3.4 can be explained in a second, shorter, way as a corollary of Theorem 4.1
and we also get part of Theorem 2.5.

Corollary 4.2. If π(x) ∈ Fp[x] is irreducible with degree d then it is separable and if α is

one of its roots in some extension field of Fp then its full set of roots is α, αp, αp
2
, . . . , αp

d−1
.

Proof. We have seen already that any finite field of p-power order is Galois over Fp. The
field Fp(α) is finite, so it is Galois over Fp and the roots of π(x) in Fp(α) can be obtained
from α by applying Gal(Fp(α)/Fp) to this root. Since the Galois group is generated by the

p-th power map, the roots of π(x) are α, αp, αp
2
, . . . . Once we reach αp

d
we have cycled

back to the start: αp
d

= α since Fp(α) ∼= Fp[x]/(π(x)) has order pd and all elements in a

field of order pd satisfy tp
d

= t. Therefore the list α, αp, αp
2
, . . . of all possible roots of π(x)

is α, αp, . . . , αp
d−1

. Why are they all distinct?
Since Fp(α)/Fp is Galois and π(x) is irreducible over Fp with a root α in Fp(α), π(x) is

separable over Fp and splits completely over Fp(α). Therefore π(x) has d different roots in

Fp(α), so the list α, αp, . . . , αp
d−1

has to consist of distinct numbers. �

The p-th power map on Fpn is called the Frobenius automorphism. This function, whose
formula doesn’t involve n, generates Gal(Fpn/Fp) for all n ≥ 1.

Let’s compute some concrete Galois groups over Fp.

Example 4.3. The polynomial x3 +x2 +1 is irreducible over F2. If α is a root of it over F2

then F2(α)/F2 is a cubic Galois extension and Gal(F2(α)/F2) = {x 7→ x, x 7→ x2, x 7→ x4}.
The second element is the Frobenius automorphism ϕ2 and the third is ϕ2

2. By Example
3.5 we have α4 = α2 +α+ 1, so we can make a table below describing each automorphism’s
effect on α in the F2-basis {1, α, α2}.

σ id. ϕ2 ϕ2
2

σ(α) α α2 α2 + α+ 1

Example 4.4. The polynomial x2 + 1 is irreducible over F3. Let α be a root, so F3(α)/F3

is a Galois extension of degree 2. Its Galois group is {x 7→ x, x 7→ x3}. A basis of F3(α)
over F3 is {1, α} and the Frobenius automorphism ϕ3 on a typical element ϕ3(a + bα) =
(a+ bα)3 = a+ bα3 since a3 = a and b3 = b for a, b ∈ F3.

The two roots of x2 + 1 are α and α3, but they are also α and −α, so α3 = −α. That
can be seen by a direct calculation as well: α3 = (α2)α = −α. So we could also describe
the Frobenius automorphism in Gal(F3(α)/F3) by ϕ3(a+ bα) = a− bα.

Example 4.5. The polynomial x3 − 2 is irreducible over F7. If α is a root of it then
F7(α)/F7 is a Galois extension and Gal(F7(α)/F7) = {x 7→ x, x 7→ x7, x 7→ x49}. From
the work in Example 3.6, α7 = 4α and α49 = 2α. Therefore we can also describe the
automorphisms in Gal(F7(α)/F7) by their effect on α as in the table below.

σ id. ϕ7 ϕ2
7

σ(α) α 4α 2α

5. General finite base fields

In addition to working with finite fields as extensions of Fp, we can fix a finite field Fq
of possibly nonprime size (e.g., q = 4 or 27) and look at finite extensions of Fq. While
every a ∈ Fp satisfies ap = a, in Fq every element a satisfies aq = a. This follows from the
proof of Lemma 2.1, but we give the proof again since it’s short: if a ∈ F×q then aq−1 = 1
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by Lagrange’s theorem, so aq = a, and this last equation is satisfied by 0 too. In a finite
extension F/Fq, the qth power map F → F is an automorphism (it is an iterate of the pth
power automorphism of F , where p is the prime that q is a power of) and the subset of F
fixed by the qth power map is Fq: the equation aq = a has at most q solutions in F and Fq
is a set of q solutions inside F . Watch out: when q is a power of the prime p then Fq has
characteristic p, not characteristic q (unless q = p). No field has a composite characteristic.
Since p = 0 in Fq, also q = 0 in Fq, so that aspect looks the same; it’s just that q is not the
smallest positive integer vanishing in Fq if q > p.

Here are analogues over Fq of results we proved over Fp. Proofs are left to the reader.

Theorem 5.1. For every positive integer n, there is a monic irreducible of degree n in
Fq[x], and all of them divide xq

n − x, which is separable. In particular, every irreducible in
Fq[x] is separable.

Theorem 5.2. Between Fq and Fqn every intermediate field has order qd where d | n.

Conversely, for each d dividing n there is a unique field between Fq and Fqn of order qd,

which is {t ∈ Fqn : tq
d

= t}.

Lemma 5.3. For every f(x) ∈ Fq[x], f(x)q
m

= f(xq
m

) for m ≥ 0.

Lemma 5.4. Let π(x) be irreducible of degree d in Fq[x]. For n ≥ 0, π(x) | (xqn − x)⇐⇒
d | n.

Theorem 5.5. Let π(x) be irreducible in Fq[x] with degree d and E ⊃ Fq be a field in

which π(x) has a root, say α. Then π(x) has roots α, αq, αq
2
, . . . , αq

d−1
. These d roots are

distinct; more precisely, when i and j are nonnegative, αq
i

= αq
j ⇐⇒ i ≡ j mod d.

Theorem 5.6. For every integer n ≥ 1, Fqn/Fq is a Galois extension and Gal(Fqn/Fq) is
cyclic with generator the q-th power map ϕq : t 7→ tq.

6. Applications

Finite fields are important in both pure and applied math. Here are some examples.

(1) Number theory. Many problems in Z are studied by reducing mod p, which puts
us in the finite fields Z/(p). In every finite extension K of Q is a ring OK playing a
role analogous to that of Z in Q. (For example, when K = Q(

√
2), OK = Z[

√
2].)

Problems in OK can often be reduced to working in the fields OK/m where m is a
maximal ideal. Every OK/m is a finite field and often is not of prime order.

(2) Group theory. Most nonabelian finite simple groups besides alternating groups
An (n ≥ 5) come from matrix groups over finite fields, and their construction is
analogous to that of simple Lie groups over C. Galois himself created finite fields of
nonprime order in order to describe primitive solvable permutation groups [1, Sect.
14.3], [2], [5, p. 344].

(3) Combinatorics. An important theme in combinatorics is q-analogues, which are
algebraic expressions in a variable q that become classical objects when q = 1, or
when q → 1. For example, the q-binomial coefficient is(

n

k

)
q

=
(qn − 1)(qn − q) · · · (qn − qk−1)
(qk − 1)(qk − q) · · · (qk − qk−1)

,

which for n ≥ k is a polynomial in q with integer coefficients. When q → 1 this has
the value

(
n
k

)
. While

(
n
k

)
counts the number of k-element subsets of a finite set, when
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q is a prime power the number
(
n
k

)
q

counts the number of k-dimensional subspaces

of Fnq . Identities involving q-binomial coefficients can be proved by checking them
when q runs through prime powers, using linear algebra over the fields Fq.

(4) Coding theory. This is the study of clear communication over noisy channels.
Messages sent back to earth by NASA space probes, information engraved on a
DVD, and signals allowing many mobile phone conversations on the same channel
are created using codes where the code words are coefficients of a polynomial over
a finite field.

(5) Cryptography. This is the study of secret communication. The usual way infor-
mation is stored securely on an ATM card involves elliptic curves over finite fields.

The lesson from the last two examples is that even people who say “math sucks” are
using finite fields every day without realizing it.

7. History

Fields of prime order, namely Z/(p), were studied by many of the early number theorists
such as Fermat, Euler, Lagrange, Legendre, and Gauss. The first mathematician to publish
a paper on finite fields of non-prime order was Galois in 1830. Gauss had developed the
theory of finite fields earlier [3], discovering such critical properties as Theorems 2.8 and
Corollary 4.2, but this was discovered only after his death in 1855 and published in 1863
without having much influence. Galois constructed finite fields as Fp(α) where α is the
root of an irreducible polynomial π(x) in Fp[x] while Gauss worked with finite fields as
Fp[x]/(π(x)). Galois wrote that there is an irreducible in Fp[x] of every degree but he did
not give a proof.

In 1893, at the International Mathematical Congress in Chicago, E. H. Moore proved
that any finite field is isomorphic to a field of the form Fp[x]/(π(x)), a theorem which
he described with the comment [6, p. 211] “This interesting result I have not seen stated
elsewhere.” Moore was the first person to use the word field in its algebraic sense, although
he treated it as a synonym for the German term endlicher Körper, which means finite field
[6, p. 208]. So to Moore, a field means what we’d call a finite field. He called any field
constructed in the concrete form Fp[x]/(π(x)) a Galois field, so for Moore a Galois field
was a particular concrete model for finite fields. Nowadays in algebra the word field is not
limited to finite fields, and the term Galois field is obsolete. However, the term Galois field
lives on today among coding theorists in computer science and electrical engineering as a
synonym for finite field and Moore’s notation GF(q) is often used in place of Fq.

Appendix A. The maximal order in a finite abelian group

In the proof that the nonzero elements in a finite field form a cyclic group (Lemma 1.6),
we relied on the following property of finite abelian groups that we will prove here.

Theorem A.1. If G is a finite abelian group and m is the maximal order of the elements
of G then the order of every element of G divides m.

The proof of Theorem A.1 is based on a corollary of the following basic property of
elements in a finite abelian group having relatively prime order.

Theorem A.2. Let g1 and g2 have respective orders n1 and n2 in an abelian group. If
(n1, n2) = 1 then g1g2 has order n1n2.
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Proof. Let n be the order of g1g2. Since

(g1g2)
n1n2 = gn1n2

1 gn1n2
2 = (gn1

1 )n2(gn2
2 )n1 = 1 · 1 = 1,

we have n | n1n2.
Since (g1g2)

n = 1, by raising both sides to the n1 power we get gnn1
2 = 1. Therefore

n2 | nn1, so from (n1, n2) = 1 we conclude n2 | n. Exchanging the roles of n1 and n2, we
get in a similar way that n1 | n. Since n1 | n and n2 | n and (n1, n2) = 1, we get n1n2 | n.
We already showed n | n1n2 (in the first paragraph), so n = n1n2. �

Remark A.3. Commutativity is used in the proof of Theorem A.2 to say (g1g2)
r = gr1g

r
2

for any r ≥ 1. All we need is that g1 and g2 commute, not that the whole group is abelian.

Corollary A.4. In an abelian group, if there are elements of order n1 and n2 then there is
an element with order [n1, n2]. More precisely, if g1 and g2 have respective orders n1 and

n2 then there are k1 and k2 in Z+ such that gk11 g
k2
2 has order [n1, n2].

Proof. The basic idea is to write [n1, n2] as a product of two relatively prime factors and

then find exponents k1 and k2 such that gk11 and gk22 have orders equal to those factors.

Then the order of gk11 g
k2
2 is the product of the factors (Theorem A.2), which is [n1, n2].

Here are the details. Factor n1 and n2 into primes:

n1 = pe11 · · · p
er
r , n2 = pf11 · · · p

fr
r .

We use the same list of (distinct) primes in these factorizations, and use an exponent 0 on
a prime that is not a factor of one of the integers. The least common multiple is

[n1, n2] = p
max(e1,f1)
1 · · · pmax(er,fr)

r .

Break this into a product of two factors, one being a product of the prime powers where
ei ≥ fi and the other using prime powers where ei < fi. Call these two numbers `1 and `2:

`1 =
∏
ei≥fi

peii , `2 =
∏
ei<fi

pfii .

Then [n1, n2] = `1`2 and (`1, `2) = 1 (since `1 and `2 have no common prime factors). By

construction, `1 | n1 and `2 | n2. Then g
n1/`1
1 has order `1 and g

n2/`2
2 has order `2. Since

these orders are relatively prime, g
n1/`1
1 g

n2/`2
2 has order `1`2 = [n1, n2]. �

Example A.5. If g1 has order n1 = 60 = 22 · 3 · 5 and g2 has order n2 = 630 = 2 · 32 · 5 · 7
then [n1, n2] = 22 · 32 · 5 · 7 = (22 · 5) · (32 · 7), where the first factor divides n1, the second
divides n2, and the factors are relatively prime. Then g31 has order 22 · 5 and g102 has order
32 · 7, which are relatively prime, so g31g

10
2 has order 22 · 5 · 32 · 7 = [n1, n2].

We are ready to prove Theorem A.2.

Proof. Let n be the order of any element of G. Since m is also the order of an element in
G, by Corollary A.4 some element in G has order [m,n]. By maximality of m as an order,
m ≥ [m,n]. Obviously m ≤ [m,n] from the definition of [m,n], so [m,n] = m, and that
implies n | m. �
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