
3/7/13 10:54 PMPostScript Tutorial

Page 1 of 12http://paulbourke.net/dataformats/postscript/

P o s t S c r i p t T u t o r i a l
Written by Paul Bourke

Original November 1990. Last updated December 1998

Translation into Bulgarian by Albert Ward.

Introduction

Postscript is a programming language that was designed to specify the layout of the printed
page. Postscript printers and postscript display software use an interpreter to convert the page
description into the displayed graphics.

The following information is designed as a first tutorial to the postscript language. It will
concentrate on how to use postscript to generate graphics rather than explore it as a
programming language. By the end you should feel confident about writing simple postscript
programs for drawing graphics and text. Further information and a complete specification of the
language can be obtained from The Postscript Language Reference Manual from Adobe
Systems Inc, published by Addison-Wesley, Reading, Massachuchusetts, 1985.

Why learn postscript, after all, many programs can generate it for you and postscript print
drivers can print to a file? Some reasons might be:

Having direct postscript output can often result in much more efficient postscript,
postscipt that prints faster than the more generic output from printer drivers.
There are many cases where generating postscript directly can result in much better
quality. For example when drawing many types of fractals where high resolution is
necessary, being able to draw at the native high resolution of a postscript printer is
desirable.
It isn't uncommon for commercial packages to make errors with their postscript output.
Being able to look at the postscript and make some sense of what is going on can
sometimes give insight on how to fix the problem.

The Basics

Postscript files are (generally) plain text files and as such they can easily be generated by hand

3/7/13 10:54 PMPostScript Tutorial

Page 2 of 12http://paulbourke.net/dataformats/postscript/

or as the output of user written programs. As with most programming languages, postscript files
(programs) are intended to be, at least partially, human-readable. As such, they are generally
free format, that is, the text can be split across lines and indented to hilight the logical structure.
Comments can be inserted anywhere within a postscript file with the percent (%) symbol, the
comment applies from the % until the end of the line.
While not part of the postscript specification the first line of a postscript file often starts as %!.
This is so that spoolers and other printing software detect that the file is to interpreted as
postscript instead of a plain text file. The inline example below will not include this but the
postscript files linked from this page will include it since they are design for direct printing.
The first postscript command to learn is showpage, it forces the printer to print a page with
whatever is currently drawn on it. The examples given below print on single pages and therefore
there is a showpage at the end of the file in each example, see the comments later regarding
EPS.

A Path

A path is a collection of, possibly disconnected, lines and areas describing the image. A path is
itself not drawn, after it is specified it can be stroked (lines) or filled (areas) making the
appropriate marks on the page. There is a special type of path called the clipping path, this is a
path within which future drawing is constrained. By default the clipping path is a rectangle that
matches the border of the paper, it will not be changed during this tutorial.

The Stack

Postscript uses a stack, otherwise known as a LIFO (Last In First Out) stack to store programs
and data. A postscript interpreter places the postscript program on the stack and executes it,
instructions that require data will read that data from the stack. For example, there is an operator
in postscript for multiplying two numbers, mul. it requires two arguments, namely the two
numbers that are to be multiplied together. In postscript this might be specified as

 10 20 mul

The interpreter would place 10 and then 20 onto the stack. The operator mul would remove 20
and then 10 from the stack, multiply them together and leave the result, 200, on the stack.

Coordinate system

Postscript uses a coordinate system that is device independent, that is, it doesn't rely on the

3/7/13 10:54 PMPostScript Tutorial

Page 3 of 12http://paulbourke.net/dataformats/postscript/

resolution, paper size, etc of the final output device. The initial coordinate system has the x axis
to the right and y axis upwards, the origin is located at the bottom left hand corner of the page.
The units are of "points" which are 1/72 of an inch long. In other words, if we draw a line from
postscript coordinate (72,72) to (144,72) we will have a line starting one inch in from the left
and right of the page, the line will be horizontal and be one inch long.

The coordinate system can be changed, that is, scaled, rotated, and translated. This is often done
to form a more convenient system for the particular drawing being created.

Basic Drawing Commands

Time to draw something. The following consists of a number of operators and data, some
operators like newpath don't need arguments, others like lineto take two arguments from the
stack. All the examples in this text are shown as postscript on the left with the resulting image
on the right. The text on the left also acts as a link to a printable form of the postscript file.

newpath
100 200 moveto
200 250 lineto
100 300 lineto
2 setlinewidth
stroke

There are also a relative moveto and lineto commands, namely, rmoveto and rlineto.

In this next example a filled object will be drawn in a particular shade, both for the outline and
the interior. Shades range from 0 (black) to 1 (white). Note the closepath that joins the first
vertex of the path with the last.

newpath
100 200 moveto
200 250 lineto
100 300 lineto
closepath
gsave
0.5 setgray
fill
grestore
4 setlinewidth
0.75 setgray
stroke

3/7/13 10:54 PMPostScript Tutorial

Page 4 of 12http://paulbourke.net/dataformats/postscript/

The drawing commands such as stroke and fill destroy the current path, the way around this is
to use gsave that saves the current path so that it can be reinstated with grestore.

Text

Text is perhaps the most sophisticated and powerful aspect of postscript, as such only a fraction
of its capabilities will be discussed here. One of the nice things is that the way characters are
placed on the page is no different to any other graphic. The interpreter creates a path for the
character and it is then either stroked or filled as per usual.

/Times-Roman findfont
12 scalefont
setfont
newpath
100 200 moveto
(Example 3) show

As might be expected the position (100,200) above specifies the position of the bottom left
corner of the text string. The first three lines in the above example are housekeeping that needs
to be done the first time a font is used. By default the font size is 1 point, scalefont then sets the
font size in units of points (1/72 inch). The brackets around the words "Example 3" indicate that
it is a string.

A slightly modified version of the above uses charpath to treat the characters in the string as a
path which can be stroked or filled.

/Times-Roman findfont
32 scalefont
setfont
100 200 translate
45 rotate
2 1 scale
newpath
0 0 moveto
(Example 4) true charpath
0.5 setlinewidth
0.4 setgray
stroke

3/7/13 10:54 PMPostScript Tutorial

Page 5 of 12http://paulbourke.net/dataformats/postscript/

You should make sure you understand the order of the operators above and the resulting
orientation and scale of the text, procedurally it draws the text, scale the y axis by a factor of 2,
rotate counter clockwise about the origin, finally translate the coordinate system to (100,200).

Colour

For those with colour LaserWriters the main instruction of interest that replaces the setgray is
previous examples is setrgbcolor. It requires 3 arguments, the red-green-blue components of the
colour each varying from 0 to 1.

newpath
100 100 moveto
0 100 rlineto
100 0 rlineto
0 -100 rlineto
-100 0 rlineto
closepath
gsave
0.5 1 0.5 setrgbcolor
fill
grestore
1 0 0 setrgbcolor
4 setlinewidth
stroke

Programming

As mentioned in the introduction postscript is a programming language. The extend of this
language will not be covered here except to show some examples of procedures that can be
useful to simplify postscript generation and make postscript files smaller.
Lets assume one needed to draw lots of squares with no border but filled with a particular
colour. One could create the path repeatedly for each one, alternatively one could define
something like the following.

/csquare {
 newpath
 0 0 moveto
 0 1 rlineto
 1 0 rlineto
 0 -1 rlineto
 closepath
 setrgbcolor
 fill
} def

20 20 scale

3/7/13 10:54 PMPostScript Tutorial

Page 6 of 12http://paulbourke.net/dataformats/postscript/

5 5 translate
1 0 0 csquare

1 0 translate
0 1 0 csquare

1 0 translate
0 0 1 csquare

This procedure draws three coloured squares next to each other, each 20/72 inches square, note
the scale of 20 on the coordinate system. The procedure draws a unit square and it expects the
RGB colour to be on the stack. This could be used as a method (albeit inefficient) of drawing a
bitmap image.

Even if one is simply drawing lots of lines on the page, in order to reduce the file size it is
common to define a procedure as shown below. It just defines a single character "l" to draw a
line segment, one can then use commands like 100 200 200 200 l" to draw a line segment from
(100,200) to (200,200).

 /l { newpath moveto lineto stroke } def

Some other useful Commands

The following are some other commonly used commands along with a brief description, again
you should consult a reference manual for the entire set of commands.

arc Draws an arc (including a circle). The arguments are xcenter, ycenter, radius,
start angle, stop angle. The arc is drawn counterclockwise, the angles are in units
of degrees.

currentpoint This is an example of an instruction that takes no arguments but leaves numbers
on the stack, namely the coordinates of the current point.

setdash This sets the dash attribute of a line in terms of a mark-space array. Just as
strings are denoted by round braces (), arrays are denoted by square braces [].
For example the following command "[3 3] 0 setdash" would make any
following lines have a 3 unit dash followed by a 3 unit space. The argument after
the dash array is the offset for the start of the first dash.

setlinecap This specifies what the ends of a stroked line look like. It takes one argument
which may be 0 (butt caps), 1 (round caps), or 2 (extended butt caps). The radius
of round caps and the extension of the butt caps is determined by the line
thickness.

3/7/13 10:54 PMPostScript Tutorial

Page 7 of 12http://paulbourke.net/dataformats/postscript/

/LINE {
 newpath
 0 0 moveto
 100 0 lineto
 stroke
} def

100 200 translate
10 setlinewidth 0 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

0 20 translate
10 setlinewidth 1 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

0 20 translate
10 setlinewidth 2 setlinecap 0 setgray LINE
1 setlinewidth 1 setgray LINE

setlinejoin This determines the appearance of joining lines. It takes one argument which
may be 0 (miter join), 1 (round join), or 2 (bevel join).

/ANGLE {
 newpath
 100 0 moveto
 0 0 lineto
 100 50 lineto
 stroke
} def

10 setlinewidth
0 setlinejoin
100 200 translate
ANGLE

1 setlinejoin
0 70 translate
ANGLE

2 setlinejoin
0 70 translate
ANGLE

curveto This draws a bezier curve through the three points given as arguments. The curve
starts at the first point, end at the last point, and the tangents are given by the line
between the first-second and second-third pair.

save and
restore

Instead of having to "undo" changes to the graphics state it is possible using save
to push the entire graphics state onto the stack and then reinstate it later with a
restore.

3/7/13 10:54 PMPostScript Tutorial

Page 8 of 12http://paulbourke.net/dataformats/postscript/

Drawing "small" Images

Printing images using postscript is somewhat more involved than the graphics discussed so far.
Examples of two image types will be presented, grey scale images (which could also be used for
black and white images) and 24 bit RGB images.

8 Bit Grey Scale

The simplest method that is applicable to small images is the postscript command image. This
take 5 arguments: the width and height of the image, the bits per pixel, a transformation matrix
(6 numbers) and finally a procedure for acquiring the image data. In the following example, the
grey scale (8 bit) image is 24 pixels wide by 34 pixels tall. Since in postscript an image is
defined from the lower left corner, and the image is defined from its top left corner, the
transformation matrix used here does the appropriate vertical flipping. The procedure used here
is esentially a null procedure, it is a hexadecimal string as indicated by the angle brackets <>.
Postscript renders images as one point square hence the scaling by 24 horizontally and 34
vertically. There are many details left out of this discussion, the reader needs to consult a
postscript reference manual for more information.

100 200 translate
26 34 scale
26 34 8 [26 0 0 -34 0 34]
{<
ff
ff000000000000000000000000000000000000ffffffffffffff
ff00efefefefefefefefefefefefefefefef0000ffffffffffff
ff00efefefefefefefefefefefefefefefef00ce00ffffffffff
ff00efefefefefefefefefefefefefefefef00cece00ffffffff
ff00efefefefefefefefefefefefefefefef00cecece00ffffff
ff00efefefefefefefefefefefefefefefef00cececece00ffff
ff00efefefefefefefefefefefefefefefef00000000000000ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00efef000000ef000000ef000000ef0000ef0000efefef00ff
ff00ef00ff
ff00ef00ff
ff00efef000000ef00000000ef00000000ef000000efefef00ff
ff00ef00ff
ff00ef00ff
ff00efef0000ef00000000000000ef000000ef0000efefef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff

3/7/13 10:54 PMPostScript Tutorial

Page 9 of 12http://paulbourke.net/dataformats/postscript/

ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ef00ff
ff00ff
ff
>}
image

24 Bit RGB Colour

RGB images with 8 bits per pixel can be represented in postscript using the command
colorimage which is very similar to the image command. In the following example the image is
32 pixels wide by 38 pixels tall.

100 200 translate
32 38 scale
32 38 8 [32 0 0 -38 0 38]
{<
1dfb0023fb002afb0031fb0037fb003ffb00
66fb006cfb0073fb0079fb0081fb0086fb00
adfb00b5fb00bbfb00c3fb00c8fb00cffb00
23f5002af50031f50037f5003ff50044f500

 ...cut...

3807003f08004508004c0800520800590800
8108008608008d07009308009a0700a20800
c90800d00800d60800dd0800e40700ea0700
>}
false 3 colorimage

What is EPS?

EPS (Encapsulated PostScript) is normal postscript with a few restrictions and a few comments
in a specified format that provides more information about the postscript that follows. It was
design to make it easier for applications to include postscript generated elsewhere within their
own pages. The full specification can be obtained from Adobe but in order to make a postscript
file DSC (Adobe's Document Structuring Convention) compliant the following must be true:

There shouldn't be a showpage, since EPS is designed to be included inside other
documents a showpage would obviously ruin the intended effect. In reality most
programs that import EPS redefine showpage so that if it does exist it doesn't cause
problems, a common definition is "/showpage { } def"

3/7/13 10:54 PMPostScript Tutorial

Page 10 of 12http://paulbourke.net/dataformats/postscript/

The file should consist of just one page.
The first line of the file should be "%!PS-Adobe EPSF-3.0"
There must be a correctly formed BoundingBox comment, this looks like
%%BoundingBox: xmin ymin xmax ymax
and tells application that plans to include the postscript how large the image is.
The file should not use any operators that change the global drawing state. In particular
the following command may not be used:

 banddevice exitserver initmatrix setshared
 clear framedevice quit startjob
 cleardictstack grestoreall renderbands copypage
 initclip setglobal initgraphics setpagedevice
 erasepage nulldevice sethalftone setscreen
 setgstate setmatrix settransfer undefinefont

The stack must be left EXACTLY in the same state at the end of the EPS file as it was at
the start of the EPS file.
The lines in EPS files cannot exceed 255 characters in length.

Perhaps most importantly, since usually an application that supports postscript file insertion
doesn't have the full postscript interpreter, an EPS file generally has a preview image associated
with it. The application dealing with the EPS file can display the preview in the user interface
giving a better idea what will print. It should be noted that EPS previews are one of the more
machine/OS dependent aspects of EPS.

Frequently Used Comments

Comments can of course be be added anywhere and they will be ignored by the interpreter.
There are some standard comments the most common of which are be listed below. The text
within the square brackets should be replaced with the appropriate text for the file in which they
appear (without the []).

 %!PS-Adobe-3.0 EPSF-3.0
 %%Creator: [generally the program that generated the postscript]
 %%Title: [descriptive name or just the file name]
 %%CreationDate: [date the file was created]
 %%DocumentData: Clean7Bit
 %%Origin: [eg: 0 0]
 %%BoundingBox: xmin ymin xmax ymax
 %%LanguageLevel: 2 [could be 1 2 or 3]
 %%Pages: 1
 %%Page: 1 1
 %%EOF

3/7/13 10:54 PMPostScript Tutorial

Page 11 of 12http://paulbourke.net/dataformats/postscript/

Drawing "large" images

Due to line length and other restrictions, turning 'large" bitmaps into postscript requires a
modification to the methods discussed earlier. The following will describe the most general case
of representing a 24 bit RGB colour image as an EPS file. While inefficient this can also be used
for greyscale and even black and white images. In the following code "width" and "height"
should be replaced with the numbers appropriate to the image.

%!PS-Adobe-3.0 EPSF-3.0
%%Creator: someone or something
%%BoundingBox: 0 0 width height
%%LanguageLevel: 2
%%Pages: 1
%%DocumentData: Clean7Bit
width height scale
width height 8 [width 0 0 -height 0 height
{currentfile 3 width mul string readhexstring pop} bind
false 3 colorimage

...hexadecimal information cut...

%%EOF

The modifications for greyscale images are quite simple, change the line

 {currentfile 3 width mul string readhexstring pop} bind

to

 {currentfile width string readhexstring pop} bind

and of course only write one hexadecimal number (representing the grey level of the pixel) for
each pixel of the image. This technique should work for images of any size.

Paper sizes

 Paper Size Dimension (in points)
 ------------------ ---------------------
 Comm #10 Envelope 297 x 684
 C5 Envelope 461 x 648
 DL Envelope 312 x 624
 Folio 595 x 935
 Executive 522 x 756
 Letter 612 x 792
 Legal 612 x 1008
 Ledger 1224 x 792
 Tabloid 792 x 1224
 A0 2384 x 3370
 A1 1684 x 2384
 A2 1191 x 1684

3/7/13 10:54 PMPostScript Tutorial

Page 12 of 12http://paulbourke.net/dataformats/postscript/

 A3 842 x 1191
 A4 595 x 842
 A5 420 x 595
 A6 297 x 420
 A7 210 x 297
 A8 148 x 210
 A9 105 x 148
 B0 2920 x 4127
 B1 2064 x 2920
 B2 1460 x 2064
 B3 1032 x 1460
 B4 729 x 1032
 B5 516 x 729
 B6 363 x 516
 B7 258 x 363
 B8 181 x 258
 B9 127 x 181
 B10 91 x 127

