3. Applied Number Theory in
Computing/Cryptography

To the layman, a lot of math (like primality testing and factoring large
numbers) may seem a frivolous waste of time. However, this research of-
ten pays off unexpectedly years later. Factoring and primality testing have
become important because of the need to make electronic communications
secure. --- So, what used to be an esoteric playground for mathematicians
has become applicable research.

DAvID GRIES AND FRED B. SCHNEIDER
A Logical Approach to Discrete Math [93]

The aim of this chapter is to introduce some novel applications of elementary
and particularly algorithmic number theory to the design of computer (both
hardware and software) systems, coding and cryptography, and information
security, especially network/communication security.

3.1 Why Applied Number Theory?

The eminent American number theorist Leonard Dickson! once said:

Thank God that number theory is unsullied by any application.

Leonard Eugene Dickson (1874-1954), one of the key figures of
20th century mathematics, particularly number theory, was born
in Independence, Iowa, a descendant of one William Dickson who
had emigrated from Londonderry, Northern Ireland to London-
derry, New Hampshire in the 18th century. Dickson obtained his
PhD in 1896 from the University of Chicago, the first PhD awarded
in Mathematics by the institution. Following periods at the Uni-

A versities of Leipzig, Paris, California and Texas, he returned to
Chicago in 1900, becoming a full professor in 1910. One of the most productive
of all mathematicians, Dickson wrote over 250 papers and 18 books, including the
three volume 1600 page History of the Theory of Numbers [65]. It is amusing to note
that he stopped to write papers and books in mathematics abruptly and completely
on reaching the age of 65 in 1939 and devoted himself to his recreations, includ-
ing bridge, tennis and billiards. (Photo by courtesy of the American Mathematical
Society.)

304 3. Applied Number Theory in Computing/Cryptography

The most famous English mathematician G. H. Hardy (1877-1947) also in
his Apology ([98], page 120) expressed that

If the theory of numbers could be employed for any practical and
obviously honourable purpose, if it could be turned directly to the
furtherance of human happiness or relief of human suffering, as physi-
ology and even chemistry can, then surely neither Gauss or any other
mathematician would have been so foolish as to decry or regret such
applications.

He then further proudly stated on page 140 that

Real mathematics has no effects on war. No one has yet discovered
any warlike purpose to be served by the theory of numbers.

The above famous quotations made by the two greatest mathematicians of
the 20th century may be true before 1950, but certainly are not true at
the present time, since, e.g., number theory now can help the generals to
plan their battles in a completely secret way. Remarkably enough, the great
Russian mathematician Nikolay Lobachevsky (1792-1856) predicated nearly
200 years ago that

There is no branch of mathematics, however abstract, which may not
some day be applied to phenomena of the real world.

In fact, any branch of pure mathematics will eventually find real world ap-
plications. Number theory, for example, was considered the purest branch of
pure mathematics, with no direct applications to the real world. The advent
of digital computers and digital communications and particularly public-
key cryptography revealed that number theory could provide unexpected
answers to real-world problems. As showed in Schroeder [222] and Wald-
schmidt, Moussa, Luck and Itzykson [250], and Guterl [96], number theory
has already been successfully applied to such diverse areas as physics, biology,
chemistry, computing, engineering, coding and cryptography, random num-
ber generation, acoustics, communications, graphic design, and even music
and business. It is also interesting to note that the eminent mathematician
Shiing-Shen Chern (1911-), the 1980 Wolf Prize Winner, even considers
number theory as a branch of applied mathematics [48] because of its strong
applicability in other fields. Today, number theory is used widely in com-
puting and information theory/technology, due in part to the invention of
the high-speed computers based on e.g., the residue number systems and the
cryptographic schemes based on e.g., large prime numbers. For example, the
feasibility of several modern cryptographic schemes rests on our ability to
find large primes easily, while their security rests on our inability to factor
the product of large primes.

Number theory is generally considered to be laid in the discrete, finite
side of mathematics, along with algebra and combinatorics, and is intimately
connected to computing science and technology, since computers are basically

3.2 Computer Systems Design 305

finite machines; they have finite storage and can only deal with numbers of
some finite length. Because of these features in computing, number theory
is particularly useful and applicable to computing. For example, congruence
theory has been used for devising systematic methods for storing computer
files, generating random numbers, designing highly secure and reliable en-
cryption schemes and even developing high-speed residue computers. Since
most computer scientists are more interested in the applications of number
theory in computing, rather than the number theory itself, in this chapter,
we shall apply the number-theoretic results and algorithms from the previous
two chapters to the design of fast computer architectures, and more secure,
more reliable computer/network systems.

3.2 Computer Systems Design

- virtually every theorem in elementary number theory arises in a nat-
ural, motivated way in connection with the problem of making computers

do high-speed numerical calculations.
DonaLp E. KNUTH

Computer Science and its Relation to Mathematics [121]

3.2.1 Representing Numbers in Residue Number Systems

The way we do arithmetic on numbers is intimately related to the way we
represent the numbers. There are essentially two different types of methods
to represent numbers: nonpositional and positional. The Roman numerals
i, ii, iii, iv, v, vi, vii, viii, ix, x, xi, xii, xiii, --- are a classical example of a
nonpositional number system; whereas the familiar decimal or binary number
system are good examples of a positional number system. The positional
number system using base b (or radix b) is defined by the rule

(' - Qa302a1000-14_20_3 - - -)b =---4 a3b3 + a2b2 + albl + agbo
+a_1b71a_2b72a_3b73 + .- (31)

It is clear that when b = 10, it is the decimal system, whereas when b = 2 we
have the binary system. This type of positional number system is said to have
a fized-base or fizxed-radiz. A positional number system which is not fixed-base
is said to be mized-base. The number systems, residue number systems, we
shall study in this section are a type of mixed-base system.

Let us first recall the Fundamental Theorem of Arithmetic: any positive
integer n € N5; can be uniquely written as

n=pipyppt =nang - ong (3.2)

306 3. Applied Number Theory in Computing/Cryptography

where p1,p2, - - -, pr are distinct primes, oy, as, - - - , a are natural numbers,
n; =p;t, i =1,2,--- k, and ged(n;,n;) = 1 for i # j. The prime decom-
position of n can be used to represent any number in Z/nZ in terms of the
numbers in Z /n;Z, for i = 1,2, -+ , k.

Definition 3.2.1. Let = be any number in Z/nZ and

x = a; (mod ny)
x = a2 (mod ne)
...... (3.3)
x = ay (mod ng)
then the k-tuple
(a1,a2, -+ ,ax) = (x mod n1, x mod na, ---, & mod ng) (3.4)

is called the residue (congruence, or modular) representation of z. For sim-
plicity, we often write the residue representation of x as follows:

xr <= (:r mod n;, £ mod ng, ---, mod nk> (3.5)

Example 3.2.1. Let ny = 3, ny, =5, n3 = 7, then the residue representation
of the integer 103 will be

103 =1 (mod 3)
103 = 3 (mod 5)
103 =5 (mod 7)

That is
103 < (1,3,5).

Note that the residue representation of an integer x wrt moduli
ni,ns, -+ ,Ng is unique. However, the inverse is not true.

Example 3.2.2. Let again ny = 3, n» = 5, ng = 7, then all the numbers in
the form
105t + 103, forte N

have the same residue representation (1,3,5). That is,
105t + 103 <= (1,3, 5).

Definition 3.2.2. Let (Z/nZ)* be the “direct-product” decomposition of
Z [nZ. That is,

(ZInZ)* = Z]Z X Z[noZ X - - - X L [nyZ (3.6)

where n; = p* for i = 1,2,--- , k is the prime decomposition of n.

3.2 Computer Systems Design 307

Theorem 3.2.1. Let m; > 0,my > 0,---,m;, > 0, and ged(m;, m;) = 1
with 0 < 7 < j < k. Then two integers x and z' have the same residue
representation if and only if

z =1z’ (mod M) (3.7)
where M = mims - --my,.

So if we restrict 0 <z < M = myms - - - my, then different integers z will
have different residue representation moduli m,me, - , my.

Theorem 3.2.2. Let f : Z/nZ — (Z /nZ)* be such that for any = € Z/nZ,
we have

fx) = (a1,a2, - ,a)
= (z modn;, z mod ng, ---, x mod ny) (3.8)
then f is a bijection (one-to-one and onto).

Remark 3.2.1. Theorem 3.2.1 is just another form of the Chinese Remain-
der Theorem.

Example 3.2.3. Let m = 30, so that m; =2, my = 3, mg = 5 with
(Z/302)* =7 /272 % Z]3Z x Z | 5.

Then the residue representations for integers in Z /307 will be:

0 < (0,0,0) 1< (1,1,1)
2 << (0,2,2) 3= (1,0,3)
4 = (0,1,4) 5 <= (1.2,0)

6 < (0,0,1) 7T+ (1,1,2)
8 <= (0,2,3) 9 < (1,0,4)
10 < (0,1,0) 11 <= (1,2,1)
12 <= (0,0,2) 13« (1,1,3)
14 <= (0,2,4) 15 < (1,0,0)
16 <= (0,1,1) 17+ (1,2,2)
18 <> (0,0, 3) 19 < (1,1,4)
20 < (0,2,0) 21 < (1,0,1)
22 = (0,1,2) 23 <= (1,2,3)
24 < (0,0,4) 25 < (1,1,0)
26 < (0,2,1) 27 < (1,0,2)
28 <= (0,1,3) 29 < (1,2,4).

Once the residue representation
(a1,a2, -+ ,a) = (x mod ny, x mod ny, -+, & mod ng)

of an integer z is given, then we can uniquely solve z by using the Chinese
Remainder Theorem (see the following example).

308 3. Applied Number Theory in Computing/Cryptography

Example 3.2.4. Suppose we have the residue representations of z as follows:
z = (z mod 3, z mod 5, z mod 7) = (1,3,5).

Then we have
(mod 3),

1
3 (mod 5),
x =5 (mod 7).

By using the Chinese Remainder Theorem, we get:

xz = 103.

Tr =
r =

On most computers the word size is a large power of 2, with 23? a common
value. So to use residue arithmetic and the Chinese Remainder Theorem to
do arithmetic, we need the moduli less than, say 232, pairwise relatively prime
and multiplying together to give a large integer.

3.2.2 Fast Computations in Residue Number Systems

In this subsection, we shall discuss fast arithmetic operations in residue num-
ber systems. More specifically, we shall discuss the fast arithmetic operations
of addition +,,, subtraction —,, and multiplication -, in (Z /nZ)* in terms of
the corresponding operations +,,, —n; 'n; it Z/n;Z,for i =1,2,--- | k.

Definition 3.2.3. Let © = (a1, a2, -+ ,a) and y = (by, ba, -+ ,by) in Z /nZ.
Then
.’17+y = (al,GQ,"',ak) +n (b17b27"'7bk)
f(x) +n fy)
= ((z mod n;) +,, (y mod n;),

(z mod ns) +,, (y mod ns),

(z mod ng) +,, (y mod ng)).

x—y = (a1,a2, - ,ax) —pn (b1,ba2, -+ ,bg)
f(@) —n f(y)

= ((z mod n;) —,, (y mod n;),

(z mod ns) —p, (y mod ns),

(z mod ng) —pn, (y mod ng)).

3.2 Computer Systems Design 309

r-y = (a17a27"')ak) n (blabZ)"' 7bk)
fl) ©n f(y)

= ((z mod n1) -, (y mod ny),

(z mod ns) -p, (y mod ns),

(z mod ng) -, (y mod ng)).
Definition 3.2.4. Given groups (G, *) and (H,*), a function f: G — H is
called an isomorphism if the following conditions hold:

(1) f is one-to-one and onto.
(2) f(axb) = f(a)* f(b), for all a,b € G.

We say that (G, *) is isomorphic to (H,x) and write (G, %) =2 (H, *).
Example 3.2.5. Show that the function f : (R,+) — (R",-) defined by
f(z) = 2% is an isomorphism. First, we have:

(1) f is one-to-one, since f(z) = f(y) implies 2% = 2%, which implies z = y.
Also f is onto, since for each r € Rt there is t € R such that 2% = ¢,
namely s = log, t.

(2) Let a,b € R, then f(a+b) = 2¢70 =2¢.20 = f(a) - f(D).

Therefore f is an isomorphism. That is
(R,+) =2 (RT,"), f(z)=2"
Theorem 3.2.3. Let f: Z/nZ — (Z/nZ)* defined by
f(z) = (x mod nq, & mod na, -+, x mod ny)

be one-to-one and onto. Then

(1) (Z/nZ, +n) = (Z/nL)", +n,)-
(2) (Z/nZ; —n) = ((Z/nL)*, —n,).
3) (Z/nZ, -n) = ((Z/0L)", -n,)-

The above theorem tells us that the arithmetic operations +,, —, and -,
in Z /nZ can be done in (Z/nZ)* by means of the corresponding operations
+niy —n; and -, in (Z/n;Z)*, for i = 1,2,--- k. This is exactly what we
need. In what follows, we shall give two examples of adding and multiplying
two large integers in residue number systems. Later in the next subsection
we shall also discuss its hardware implementation.

310 3. Applied Number Theory in Computing/Cryptography

Example 3.2.6. Compute z = z + y = 123684 + 413456 on a computer of
word size 100. Firstly we have

z =33 (mod 99), y = 32 (mod 99),

z = 8 (mod 98), y =92 (mod 98),

x = 9 (mod 97), y =42 (mod 97),

=89 (mod 95), y = 16 (mod 95),
so that

z=x+y =65 (mod 99),
z=x+y= 2 (mod 98), (3.9)
z=x+y =51 (mod 97), ‘

z =124y =10 (mod 95).

Now, we use the Chinese Remainder Theorem to find
x +y mod (99 x 98 x 97 x 95).
Note that the solution to (3.9) is

1
z EZ iM/z; (mod m),
-1

where
m = mimamsmny,
Mi = m/mi,
! —
M[M; =1 (mod m;),

for ¢ =1,2,3,4. Now we have
M =99 x 98 x 97 x 95 = 89403930,

and
My, = M/99 = 903070,
Ms = M/98 = 912285,
M5 = M/97 = 921690,
My = M/95 = 941094.

We need to find the inverse M/, for i = 1,2,3,4. To do this, we solve the
following four congruences

903070M! = 91M! =1 (mod 99),
912285M} = 3M} =1 (mod 98),
921690M = 93M = 1 (mod 97),
941094M! = 24M! = 1 (mod 95).

We find that
M =37 (mod 99),
M} = 38 (mod 98),
M} = 24 (mod 97),
Mi =4 (mod 95).

Hence we get:

3.2 Computer Systems Design 311

4
z+y =Y, zM;M] (mod m)
i=1
=65 x 903070 x 37 + 2 x 912285 x 38 + 51 x 921690 x 24
+10 x 941094 x 4 (mod 89403930)
= 3397886480 (mod 89403930)
= 537140 (mod 89403930)

Since 0 < z + y = 537140 < 89403930, we conclude that = + y = 537140 is
the correct answer.

Example 3.2.7. Suppose now we want to multiply z = 123684 and y =
413456 on a computer of word size 100. We then have

z = 33 (mod 99), y = 32 (mod 99),
z = 8 (mod 98), y = 92 (mod 98),
z = 9 (mod 97), y = 42 (mod 97),
x = 89 (mod 95), y = 16 (mod 95),
2 = 63 (mod 89), 51 (mod 89),
z = 14 (mod 83), y = 33 (mod 83),
so that

x -y =66 (mod 99),

z -y =50 (mod 98),

x -y = 87 (mod 97),

z -y =94 (mod 95),

z-y = 9 (mod 89),

x -y =47 (mod 83).

Now using the Chinese Remainder Theorem to solve the above system of

congruences, we get
x -y = 51137891904.

Since
0<x-y=>51137891904 < 803651926770 = nynsnznansng

we conclude that x -y = 51137891904 is the correct answer.

In what follows, we shall present a general algorithm for residue arithmetic
in (Z /nZ)*, where n = nins - - - ng, by means of the corresponding operations
in (Z/n;Z)*, for i = 1,2,--- k. Readers note that there are three different
types of arithmetic:

(1) Integer arithmetic: arithmetic in Z.
(2) Modular arithmetic: special integer arithmetic in Z /nZ.
(3) Residue arithmetic: special modular arithmetic in (Z /nZ)*.

In this book, we are actually more interested in the last two types of arith-
metic.

312 3. Applied Number Theory in Computing/Cryptography

Algorithm 3.2.1 (Residue arithmetic). This algorithm performs the
residue arithmetic in (Z/nZ)*, where n = ninz - - ny:

[1] Convert integers to their residue representation: Represent integers, for ex-
ample, z and y as elements of the group (Z/nZ)*, where

(Z/nZ)* =Z]mZ X L[nol X --- X L[ni

by taking the congruence class of = or y modulo each n;; for example, the
following is the residue representation of = and y modulo each n;:

(x =z, (mod ny), z =x2 (mod ns), ---, £ =z (mod ny)),

(y =y (mod ny), y =y2 (mod ny), ---, y = yr (mod ny)).

[2] Perform the residue arithmetic for each Z/n;Z: For example, if x denotes

one of the three binary operations +, — and -, then we need to perform the
following operations in Z /n;Z:

(1 xy1 (mod ny), xe *y2 (mod n2), -+ ,xk *yr (mod ng)).

[3] Convert the residue representations back to integers: Use the Chinese Re-
mainder Theorem to convert the computation results for each Z/n;Z into
their integer form in Z /nZ

where

fori=1,2,--- k.

The above algorithm can be implemented entirely in special computer
hardware, which is the subject matter of our next subsection.

3.2.3 Residue Computers

The conventional “binary computers” have a serious problem that restricts
the speed of performing arithmetic operations, caused by, for example, the
carry propagation and time delay. Fortunately, the residue number system
(RNS) is not a fixed-base number system, and all arithmetic operations (ex-
cept division) in RNS are inherently carry-free; that is, each digit in the com-
puted result is a function of only the corresponding digits of the operands.

3.2 Computer Systems Design 313

Consequently, addition, subtraction and multiplication can be performed in
“residue computers” in less time than that needed in equivalent binary com-

puters.
The construction of residue computers is much easier than that of binary

computers; for example, to construct fast adders of a residue computer for
(Z/nZ)* =Z]mZ X L[nol X --- X L[niL

it is sufficient to just construct some smaller adders for each Z/n;Z, (i =

1,2,--- k) (see Figure 3.1). More generally, we can construct residue com-

= 1 > Fast adder N
g 9?2] for Z/mZ
&
g
8 Tk

> Fast adder

. for Z/noZ CRT z+y

—
in Z/nZ
s U
g
= ¥
5 : > Fast adder
g
= : for Z /nZ
< >
Yk

Figure 3.1. Fast adders for residue arithmetic

puters performing fast additions, subtractions and multiplications as in Fig-
ure 3.2. Since n; is substantially less than n, computations in each Z /n;Z will
certainly be much easier than those in Z /nZ. More importantly, additions,
subtractions and multiplications in each Z /n;Z are carry-free, so residue com-
puters will be substantially faster than conventional binary computers inher-
ently with carry propagation. The idea of decomposing a large computation

314 3. Applied Number Theory in Computing/Cryptography

Parallel and fast computations in different arithmetic units

Arithmetic operations
for Z /mZ
1 + y1 mod n
x1 — y1 mod ny

r1 = z mod ny

Y

Y

T2 = x mod nr—

1 - y1 mod ng

T = x mod nyg

(Residues for) x + ymodn
Arithmetic operations v — wmodn
> for Z /noZ Yy
22 + y2 mod ns =x-ymodn
(n=mning---ng)
—> x2 — Y2 mod n2
————»
Z2 - Y2 mod na
Final
computation
using CRT
for Z/nZ
y1 =y mod n1
y2 =y mod no Arithmetic operations
. - for Z /niZ
Zr + yr mod ny N
T — Yr mod ny
Yk =y mod ny "l xp - yr mod ny
(Residues for y)
Integers = Residues Computations in RNS Residues = Integers

Figure 3.2. A model of residue computers

in Z /nZ into several smaller computations in the Z/n;Z is exactly the idea
of “divide-and-conquer” used in algorithm design. Of course, the central idea
behind residue arithmetic and residue computers is the Chinese Remainder
Theorem which enables us to combine separate results in each Z /n;Z to a fi-
nal result in Z/nZ. So, if Euclid’s algorithm is regarded as the first nontrivial
algorithm, then the Chinese Remainder Theorem should be regarded as the
first nontrivial divide-and-conquer algorithm.

Residue computers are a special type of high-speed computer, that has
found many important applications in several central areas of computer sci-
ence and electrical engineering, particularly in image and digital signal pro-
cessing (Krishna, Krishna, Lin, and Sun [133]).

3.2 Computer Systems Design 315

3.2.4 Complementary Arithmetic

The main memory of a computer is divided into a number of units of equal
size, called words. Each word consists of n = 2™ bits, where n is typically 16,
32, 64 or 128. Provided that a positive integer is not too large, it can then
be represented simply by its binary form in a single word of the computer
memory. For example, a 16-bit word could hold the positive values from 0
to 65535. The problem is then how to represent negative integers. There are
a number of ways to do this; the most obvious way is the signed-magnitude
representation.

Definition 3.2.5. In the signed-magnitude representation, the first bit of
the m-bit word is used to denote the sign (0 for + and 1 for —), called the
sign bit, and the remaining m — 1 bits are used to represent the size, or
magnitude of the number in binary form.

Example 3.2.8. Let m = 8. Then to represent the integers +117 and —127
in signed-magnitude representation, we have:
+117 = 0 1110101
\J \J

sign bit number magnitude

-127 = 1 1111111
+ +

sign bit number magnitude.

In a computer with 16-bit words, using the signed-magnitude representation,
the largest integer that can be stored is

0111111111111111 = 2" — 1 = 32767

15 ones

and the smallest is

1111111111111111 =1 — 2" = —32767.

15 ones

Example 3.2.9. Let m = 8. To compute 117 + (—127) and 117 + 127 in the
signed-magnitude representation, we have:

01110101 +1110101

+ 11111111 —1111111

- :> -
—0001010 == 10001010 = -—10

316 3. Applied Number Theory in Computing/Cryptography

01110101 +1110101

+ 01111111 +1111111

- :> -
+1110100 == 01110100 = 116.

Note that in the above computation the most significant bit is the sign
bit that does not take part in the computation itself: we need first to convert
the sign bit to either + or —, then perform the computation and convert the
sign of the result into a sign bit. Note also that 117+ 127 = 116 # 244; this is
because the adder in a computer operates modulo n. Computers cannot deal
with all integers but just a finite set of them, even using the multiple-precision
representation. When two binary strings a and b are added together, the adder
treats n = 2™~ ! as if it were 0! The computer sum a ® b is not necessarily
a+b,but a+bmodulo 2™ . Ifa+b>2""' thena®b=a+b—2m"".
Since 2™~! =0 (mod 2™!), we have

a+b=a®b (mod 2™). (3.10)
Again in the above example, we have
117 + 127 = 224 = 116 (mod 2°°1).

While the signed-magnitude representation was used in several early com-
puters, modern computers usually use either the one’s or two’s complement
representation, rather than the signed-magnitude representation.

Definition 3.2.6. Let = be a binary number, then the complement of z,
denoted by z’, is obtained by replacing each 0 in z by 1 and each 1 in z by 0.
In the one’s complement representation, a positive integer is represented as
in the signed-magnitude representation, whereas a negative integer is repre-
sented by the complement of the corresponding binary number. In the two’s
complement representation, a positive integer is represented as in the one’s
representation, but a negative integer is represented by adding one to its
one’s complement representation.

The range of a number (positive or negative) with m bits in one’s com-
plement representation is given by

1—-2mt1-2m141,... -1,-0,0,1,---,2™ ' — 1. (3.11)

The range of a number with m bits in two’s complement representation is
given by

—gm=t _gm=l 4 q... -2 -1,01,---,2" 1 —1. (3.12)
For example, let m = 5, then the range of a number in one’s complement is
1-251 1-2%"t41, ..., -1, -0, O, 1, ---, 20711
xS \ \ ol \

—15, —14, e, =1, =0, 0, 1, -, 15

3.2 Computer Systems Design 317

and the range of a number in two’s complement is

5=l 1925141 ..., —2 -1, 0, 1, ---, 271_1
d \ \ L4l d
—16, —15, s, =2, =1, 0, 1, ---, 15

One interesting observation about the two’s complement representation is
that it has only one representation for zero, whilst there are two zeros in, ei-
ther the one’s complement representation, or the signed-magnitude represen-
tation. For example, let m = 5, then in the one’s complement representation,
00000 represents 0 but 11111 represents —0, whilst in the signed-magnitude
representation, 00000 represents 0 but 10000 represents —0. Table 3.1 gives a
comparison of different representations of numbers. By using either the one’s
complement or two’s complement, rather than the signed-magnitude repre-
sentation, the operation of subtraction is considerably simplified; this is the
reason that modern computers use, either the one’s complement, or two’s
complement, not the signed-magnitude representation.

Example 3.2.10. Let a = 117 and b = —127, compute a + b in the one’s
complement representation. First note that in the signed-magnitude repre-

sentation,
a = 01110101 b=11111111

thus in the one’s complement representation,
a' = 01110101 b' = 00000000

therefore, a + b becomes

01110101
-+ 00000000

01110101 = 10001010 = -—10.

3.2.5 Hash Functions

Hashing is a very important technique in algorithm and database design, as
well as in cryptography. In this subsection, we shall introduce an interesting
application of number theory in hash function design.

Definition 3.2.7. Let k be the key of the file to be stored, and n be a
positive integer. We define the hash function h(k) by

h(k) =k (mod n) (3.13)
where 0 < h(k) < n, so that h(k) is the least positive residue of k¥ modulo n.

There are two fundamental problems here in the design a good hash func-
tion:

318 3. Applied Number Theory in Computing/Cryptography

Table 3.1. Comparison of different representations of numbers

Pure | Binary Signed- 1’s 2’s
Binary Magnitude | Complement | Complement

0 00000 0 0 0
1 00001 1 1 1
2 00010 2 2 2
3 00011 3 3 3
4 00100 4 4 4
5 00101 5 5 5
6 00110 6 6 6
7 00111 7 7 7
8 01000 8 8 8
9 01001 9 9 9
10 01010 10 10 10
11 01011 11 11 11
12 01100 12 12 12
13 01101 13 13 13
14 01110 14 14 14
15 01111 15 15 15
16 10000 —0 —15 —16
17 10001 -1 —14 —15
18 10010 -2 —13 —14
19 10011 -3 —12 —13
20 10100 —4 —11 —12
21 10101 -5 —10 —11
22 10110 —6 -9 —10
23 10111 -7 -8 -9
24 11000 —8 -7 -8
25 11001 -9 —6 -7
26 11010 —10 -5 —6
27 11011 —11 —4 -5
28 11100 —12 -3 —4
29 11101 —13 -2 -3
30 11110 —14 -1 -2
31 11111 —15 —0 -1

(1) How to intelligently choose the value of n,

(2) How to avoid collisions.

The first problem can be solved (at least partially) by selecting n a prime
close to the size of the memory. For example, if the memory size is 5000, we
could pick n to be 4969, a prime close to 5000.

To solve the second problem, we could use the so-called double hash tech-
nique. The first hash function is the same as (3.13), defined previously, whilst
the second hash function is taken as follows:

g(k)=k+1 (mod n—2) (3.14)

3.2 Computer Systems Design 319

where 0 < g(k) < n —1, is such that ged(h(k),n) = 1. The probing sequence
is defined as follows:

hj(k) = h(k)+j - g(k) (mod n) (3.15)
where 0 < hj(k) < n. Since ged(h(k),n) =1, as j runs through the integers
1,2,3,--- ,n — 1, all memory locations will be traced out. Since n is prime,

the ideal selection for the moduli n — 2 would be also prime, that is, n and
n — 2 are twin primes.

Example 3.2.11. Suppose we wish to assign memory locations to files with
the following index numbers:

k1 = 197654291 ko = 087365203
ks = 528972276 ks = 197354864
ks = 873032731 ke = 732975102
k7 = 216510386 ks = 921001536
ko = 933185952 k1o = 109231931

k11 = 132489973
We first choose n = 5881, compute h(k;) = k; mod n, and get:

h(ky) = 197654291 mod 5881 = 5643
h(ky) = 087365203 mod 5881 = 2948
5) = 528972276 mod 5881 = 5643
4) = 197354864 mod 5881 = 266
5) = 873032731 mod 5881 = 4162

)

)

)

)

h(k
h(k
h(k
h(ks) = 732975102 mod 5881 = 2548
h(kz) = 216510386 mod 5881 = 1371
h(k
h(k
h(k
h(k

s) = 921001536 mod 5881 = 1650
9) = 933185952 mod 5881 = 634

10) = 109231931 mod 5881 = 4162
11) = 132489973 mod 5881 = 2805

Since
(k) = h(ks) = 5643 (mod 5881),
h(k5) = h(klo) = 4162 (mod 5881)

we then need to find new locations hy(k3) and hi(kig) for the 3rd and the
10th record by the formula

hi(k) = h(k) +1-g(k) (mod n), with g(k) =k +1 (mod n —2)
as follows:

g(k3) =14 ks mod 5879 = 1 + 528972276 mod 5879 = 3373,
g(k10) = 1 + k1o mod 5879 = 1 + 109231931 mod 5879 = 112,
hl(k?3) = h(k3) +1- g(k'g) mod 5881

= 528972276 + 1 - 3373 mod 5881 = 3222,
h1 (klo) = h(klo) +1- g(klo) mod 5881

= 109231931 + 1 - 112 mod 5881 = 4239.

320 3. Applied Number Theory in Computing/Cryptography

So finally we have:

Index Number | h(k) | hi(k)
197654291 5643
087365203 2948
528972276 5643 | 3222
197354864 266
873032731 4162
732975102 2548
216510386 1371
921001536 1650
933185952 634
109231931 4162 | 4239
132489973 2805

Since we can repeatedly compute h(k), hy(k), ho(k), -+, a suitable loca-
tion for a record will be eventually found. However, by using the Chinese
Remainder Theorem, it is possible to construct a collision-free hash function.

Definition 3.2.8. Let W = {wop, w1, - ,wp—1} and I = {0,1,---,(n—1)}
be sets with n > m. The hash function A : W — [is called a perfect hash
function (PHF), if for all z,y € W and = # y, h(z) # h(y). In particular,
if m = n, h is called a minimal perfect hash function (MPHF). A minimal
perfect hash function is also called a minimal collision-free hash function.

The MPHF technique is better than any existing information retrieval
method, but the problem is that it is computationally intractable. Recent
research shows, however, that we can use the Chinese Remainder Theorem
to efficiently construct a MPHF. We describe in the following one such con-
struction, due to Jaeschke [113].

Theorem 3.2.4. For a given finite set W (without loss of generality, we
assume that T is a finite set of positive integers), there exist three constants
C, D and FE, such that the function A defined by

h(w)=|C/(Dw+ E)] (mod n—1), |[W|=n-1 (3.16)
is a minimal perfect hash function.

The function is clearly a bijection from W onto the set I. The proof of
this theorem can be done by using a generalization of the Chinese Remainder
Theorem (CRT) for non-pairwise (i.e., not necessarily pairwise) relatively
prime moduli. First note that for a given set W = {wg, w1, - ,wyp_1} of
positive integers there exist two integer constants D and E such that

D’U}g-l-E, D’U}1+E, T, Dwn,1+E

3.2 Computer Systems Design 321

are pairwise relatively prime, so by the CRT there exists an integer C' such
that
C = ap (mod (n — 1)(Dwy + E))
C =a; (mod (n—1)(Dw; + E))
...... (3.17)

C=a,_1 (mod (n—1)(Dw,_1 + E)).

Finally, we introduce another type of hash function, called one-way hash
function, also called message digest or fingerprint.

Definition 3.2.9. A one-way hash function maps a string (message) m of
arbitrary length to an integer d = H(m) with a fixed number of bits, called
digest of m, that satisfies the following conditions:

[1] Given m, d is easy to compute.
[2] Given d, m is computationally infeasible to find.
A one-way hash function is said to be collision resistant if it is computa-

tionally infeasible to find two strings m; and ms that have the same digest
d.

Several one-way hash functions believed to be collision resistant; the ones
used most in practice are MD5, which produces a 128-bit digest, and SHA-1,
which produces a 160-bit digest (MD stands for message digest and SHA
stands for secure hash algorithm). The most important application of one-
way collision resistant hash functions is to speed up the construction of digital
signatures (we shall discuss digital signatures later), since we can sign the
digest of the message, d = H(m), rather than the message itself, m. That is,

S = D(H(m)), (3.18)

where D is the digital signature algorithm.

3.2.6 Error Detection and Correction Methods

In this subsection, we shall discuss an interesting application of the theory of
congruences in error detections and corrections.

It is evident that manipulating and transmitting bit strings can introduce
errors. A simple error detection method, called parity check works in the
following way (suppose the bit string to be sent is x1xs -+ - xy,):

[1] (Precomputation) Append to the bit string a parity check bit xp11
Tp+1 = &1 + T2 + -+ + @y (mod 2), (3.19)

so that

322 3. Applied Number Theory in Computing/Cryptography

0, if there is an even number of
Tpt1 = lin 2122 - - Ty, (3.20)
1, otherwise.

The appended string 1z - - £pxp41 should satisfy the following congruence
1+ T2+ -+, + Ty =0 (mod 2). (3.21)

[2] (Error Detection) Suppose now we send the string & = 2123 - - - £, 41 and
the string y = y1y2 - * - YnYn+1 is received. If x = y, then there are no errors,
but if x # y, there will be errors. We check whether or not

y1+y2+ -+ Yn +ynt1 =0 (mod 2) (3.22)

holds. If this congruence fails, at least one error is present; but if it holds,
errors may still exist. Clearly, we can detect an odd number of errors, but
not an even number of errors.

The above method can be easily extended to checking for errors in strings
of digits, rather than just bits. The use of check digits with identification
numbers for error detection is now a standard practice. Notable examples
include social security numbers, telephone numbers, serial numbers on cur-
rency predate computers, Universal Product Codes (UPC) on grocery items,
and International Standard Book Numbers (ISBN) on published books. In
what follows, we shall introduce a modulus 11 error correction and detection
scheme for ISBN numbers.

Every recently published book has a 10-digit codeword called its Inter-
national Standard Book Number (ISBN). This is a sequence of nine dig-
its @1y - - - ®g, where each z; € {0,1,2,---,9}, together with a check digit
z10 € {0,1,2,---,9, X} (we use the single letter X to represent the two digit
number 10). This last digit x1o is included so as to give a check that the
previous nine digits have been correctly transcribed; z1o can be obtained by

9
10 = lel (mod 11) (323)

i=1

Note that if we arrange the ten digit ISBN number in the order of
ZT10Tg - -+ T2x1, then the check digit x; is determined by

2
2y =11-) ix; (mod 11). (3.24)
=10

The whole 10-digit number satisfies the following so-called check congruence

10
> iz =0 (mod 11). (3.25)

i=1

3.2 Computer Systems Design 323

Example 3.2.12. The first nine digits of the ISBN number of the book by
Ireland and Rosen [111] are as follows:

0-387-973209.
Find the check digit of this ISBN number. We first let

0 3 8 7 9 7 3 2 9
r+r ¢t t1

ry X2 T3 T4 T3 Te X7 T8 Tg

Then
9
Tio = sz, (mod 11)
i=1
= [1-0+2-3+3-84+4-74+5-9+
6-7+7-3+8-24+9-9] (mod 11)
= 10=X
If we let
0 3 8 7 9 7 3 2 9
e
Tio L9 Ty Ty Teg Ty T4 T3 T2
Then

2
11—) iw; (mod 11)
=10
11-[10-04+9-3+8-8+7-7+
6-9+5-7+4-3+3-2+2-9] (modl11)
= 10=X

T

So the complete ISBN number of the book is
0-387-97329-X.

Generally speaking, the coefficients a;, for i = 1,2,---,n (or i = n,n —
1,--+,1) could be any numbers as long as the n digits satisfies the check
congruence:

a1x1 + asxs + -+ - + apz, =0 (mod m).

Example 3.2.13. The ISBN number of the present book is
3-540-65472-0

324 3. Applied Number Theory in Computing/Cryptography

and it satisfies its check congruence

10

> imi =[1-3+2-54+3-44+4-0+5-6+6-5+7-4+8-7+9-2+10-0] (mod 11).
i=1

Suppose the first nine digits of the ISBN number are given and we are asked
to find the check digit 10, then we have

9
Ti0 = Y iw; = [1:3+2:5+3-4+4:0+5:6+6-5+7-4+8-7+9-2] (mod 11) = 0.
i=1

Example 3.2.14. Suppose a book whose ISBN number is as follows
9-810-23422-8

where z is an unknown digit. What is 2?7 To find the value for z, we perform
the following computation:

[1-9+2-8+3:14+4-04+52+6-34+7-44+8-2+9-2+10-8] (mod 11) =1.

So, we have
1+ 5z =0 (mod 11).

To solve this linear congruence, we get

1
T = —x (mod 11)

—9 (mod 11) (since =9 (mod 11))

ot =

2 (mod 11).

Thus, z = 2.

Exercise 3.2.1. Find the value of z in each of the following ISBN numbers:
0-201-07981-z,

0-8053-2340-2,
0-19-823171-0.

The ISBN code can detect

(1) 100% of all single digit errors,
(2) 100% of double errors created by the transposition of two digits.

The detection process is as follows. Let x = x1x2---x19 be the original
10

codeword sent, y = y1y2---yio the received string, and S = > iy;. If

i=1

S = 0 (mod 11), then y is the legitimate codeword and we assume it is

correct, whereas if S Z 0 (mod 11), then we have detected error(s):

3.2 Computer Systems Design 325

(1) Suppose the received string y = y1y2---y10 is the same as x =
T1To -+ T1o except that the y, = xp +a with 1 < k < 10 and a # 0.
Then

10 10
S = Ziyi = szl + ka Z 0 (mod 11),
i=1 i=1

since k and a are all non-zero elements in Z/11Z.

(2) Suppose the received string y = y1y2 - - - y10 is the same as x = z1x2 - 10
except that y; and z;, have been transposed. Then

S

10 10
S iyi =Y imi+ (k= j)z; + (G — k)

=1 =1

= (k—j)(zj —xx) #0 (mod 11), if k # j and x; # 4.

Note that since Z/11Z is a field, the product of two non-zero elements is
also non-zero but this does not hold in Z/10Z, which is only a ring (say, for
example, 2 -5 = 0 (mod 10)); this is why we work with modulo 11 rather
than modulo 10. Note also that the ISBN code cannot be used to correct
errors unless we know that just one digit is in error. Interested readers are
suggested to consult Gallian [77] and Hill [104] for more information about
error detection and correction codes.

We now move to the introduction of another interesting error detection
technique for programs (Brent [38]). The Galileo spacecraft is somewhere near
Jupiter, but its main radio antenna is not working, so communication with it
is slow. Suppose we want to check that a critical program in Galileo’s mem-
ory is correct. How can we do this without transmitting the whole program
from/to Galileo? The following is a method (possibly the simplest method)
for checking out Galileo’s program based on some simple number-theoretic
ideas; the method was first proposed by Michael Rabin:

Let P, be the program in Galileo and P, the program on Earth, each repre-
sented as an integer. Assuming P, is correct, this algorithm will try to determine
whether or not P, is correct:

[1] Choose a prime number 10? < p < 2-10? and transmit p (p has no more
than 32 bits) to Galileo and ask it to compute 7, < P, mod p and send the
remainder r, back to Earth (r, has no more than 32 bits).

[2] On Earth, we compute r, <— P. mod p, and check if r, = r,.

[3] If ry # 7, we conclude that P, # P,. That is, Galileo's program has been
corrupted!

[4] If ry = 7¢, we conclude that P, is probably correct. That is, if P, is not
correct, there is only a small probability of < 107 that r, = r,. If this error
probability is too large to accept for the quality-assurance team, just goto
step [1] to start the process all over again, else terminate the algorithm by
saying that P, is “almost surely” correct! It is clear that if we repeat the

326 3. Applied Number Theory in Computing/Cryptography

process, for example, ten times on ten different random primes, then the
error probability will be less than 107°°, an extremely small number.

Clearly the idea underlying the method for program testing is exactly the
same as that of the probabilistic method for primality testing.

3.2.7 Random Number Generation

Anyone who considers arithmetic methods of producing random digits is,

of course, in a state of sin.
JOHN VON NEUMANN (1903-1957)

“Random” numbers have a great many uses in, e.g., numerical simulations,
sampling, numerical analysis, testing computer chips for defects, decision
making, coding and cryptography, and programming slot machines, etc. They
are a valuable resource: in some cases, they can speed up computations, they
can improve the rate of communication of partial information between two
users, and they can also be used to solve problems in asynchronous dis-
tributed computation that is impossible to solve by deterministic means. A
sequence of numbers is random if each number in the sequence is indepen-
dent of the preceding numbers; there are no patterns to help us to predict
any number of the sequence. Of course, truly random numbers are hard to
come by, or even impossible to get. Thus, the so-called random numbers are
actually pseudorandom numbers. Since the invention of the first electronic
computer, researchers have been trying to find efficient ways to generate
random numbers on a computer. We have, in fact, already seen some appli-
cations of random numbers in this book; for example, Pollard’s p-method,
introduced in Chapter 2, uses random numbers in finding prime factorization
of large integers. In this subsection, we shall briefly introduce some methods
for generating random numbers based on linear congruences.

Firstly, let us introduce an arithmetic method, called the middle-square
method, suggested by John von Neumann? in 1946. The algorithmic descrip-
tion of the method is as follows:

2

John von Neumann (1903-1957) was born in Budapest, Hungary,
but lived in the U.S.A. from 1930 onwards. He is one of the leg-
endary figures of 20th century mathematics. He made important
contributions to logic, quantum physics, optimization theory and
game theory. His lifelong interest in mechanical devices led to his
being involved crucially in the initial development of the modern
electronic computer and the important concept of the stored pro-
gram. He was also involved in the development of the first atomic
bomb.

3.2 Computer Systems Design 327

Algorithm 3.2.2 (Von Neumann’s middle-square method). This al-
gorithm uses the so-called middle-square method to generate random numbers:

[1] Let m be the number of random numbers we wish to generate (all with, for
example, 10 digits), and set i < 0.

[2] Randomly choose a starting 10-digit number ng.
[3] Square n; to get an intermediate number M, with 20 or less digits.

[4] Set i = i+1 and take the middle ten digits of M as the new random number
n;.

[5] If i < m then goto step [3] to generate a new random number, else stop the
generating process.

Example 3.2.15. Let ng = 9524101765, and m = 10. Then by Algorithm
3.2.2 we have

95241017652 = 90708514430076115225
51443007612 = 26463830319625179121
83031962512 = 68943067982620455001
06798262042 = 462163667645049616

6366764504 = 40535690249394366016
69024939432 = 47644422633151687249
42263315162 = 17861878083134858256
87808313482 = 77102999162019497104
99916201942 = 99832474101148597636
47410114852 = 22477189900901905225

n1 = 5144300761
ne = 8303196251
ng = 0679826204
ny = 6366764504
ns = 6902493943
ne = 4226331516
ny = 8780831348
ng = 9991620194
ng = 4741011485
nio = 1899009019.

FOLULEniel

A serious problem with the middle-square method is that for many choices
of the initial integer, the method produces the same small set of numbers over
and over. For example, working with numbers that have four digits, staring
from 4100, we obtain the sequence

8100, 6100, 2100, 4100, 8100, 6100, 2100, - - - .

In what follows, we shall introduce some methods based on congruence the-
ory, which can generate a sequence of numbers that appear to be essentially
random.

Congruence theory is useful in generating a list of random numbers. At
present, the most popular random number generators in use are special cases
of the so-called linear congruential generator (LCG for short), introduced
first by D. H. Lehmer in 1949. In the linear congruential method, we first
choose four “magic” numbers as follows:

n: the modulus; n>0
To: the seed; 0<z<n
a: the multiplier; 0<a<n

b: the increment; 0<b<n

328 3. Applied Number Theory in Computing/Cryptography

then the sequence of random numbers is defined recursively by:
zj=azxj_1 +b (modn), j>0, (3.26)

for 1 < j <, where | € N is the least value such that ;41 = ; (mod n) for
some j < [. We call | the period length of the LCG generator. Clearly, the
maximum length of distinct random numbers generated by the LCG is the
modulus n. The best random number generator is, of course, the one that has
the maximum length of distinct random numbers. Knuth gives a necessary
and sufficient condition for a LCG to have maximum length:

Theorem 3.2.5 (Knuth [123]). A LCG has period length I = n if and
only if ged(b,n) =1, a = 1 (mod p) for all primes p | n and a = 1 (mod 4)
if 4 | n.

Note that the parameter a is sometimes set to be 1; in that case, the LCG
is just a “plain” linear congruential generator. When a is set to be greater
than 1, it is sometimes called a multiplicative linear congruential generator.
Now we are in a position to give an algorithm for a LCG.

Algorithm 3.2.3 (Linear Congruential Generator). This algorithm will
generate a sequence of random numbers {1, x2, -+ ,x,}.

[1] [Initialization] Input zg, @, b, n and k (here k is just the number of random
numbers the user wishes to generate; we can simply set k =n). Set j < 1.

[2] [Random Number Generation] Compute z; < (azj—1 + b) (mod n), and
print z;.

[3] [Increase j] j < j + 1. If j > k, then goto Step [4], else goto Step [2].

[4] [Exit] Terminate the algorithm.

Example 3.2.16. Let 29 =5, a =11, b =73, n = 1399 and k£ = 10. Then
by Algorithm 3.2.3 we have:

ZTo = 5

1 = azxo+b (mod n) — r1 =128
2 = axp +b (mod n) — To = 82
z3 = axy+b(mod n) = x3 =975
s = awxz+b(mod n) — x4 = 1005
xz = azxs+b (mod n) — rs = 1335
g = azxs+b (mod n) — T = 768
x7 = axe+b (mod n) — rr = 127
g = awxy+b (mod n) = g =71
9 = awxg+b (mod n) = T9 = 854
Tio = axg+ b (mod n) — r10 = 1073

Tr231 = araszg + b (mod TL) - To31 = 1149

3.2 Computer Systems Design 329

T3z = arsz; +b (HlOd n) — Tozo = 121
233 = axszs + b (mod TL) — To33 = O
T34 = arss3z +b (mod TL) - Toz4 = 128.

So the length of this random number sequence
(71, 22,73, 24, Ts5, T, T7, T8, T, T10, " "+, T231, T232, T233)
= (128,82,975,1005, 1335, 768,127, 71,854,1073, - - - , 1149, 121, 5)
generated by the LCG
2o =5 (mod 1399),
zj =11-2;_1 +73 (mod 1399), j=1,2,---,

is 233, i.e., | = 233.
Normally, we could set n = 2", a = 2/ + 1 with i < r, and b = 1. Thus,
Equation (3.26) becomes

zj =2+ z; 1 +1 (mod?27), j=1,2,---. (3.27)

To make a LCG a good random number generator, it is necessary to find good
values for all the four magic numbers (not just the modulus n) that define the
linear congruential sequence. Interested readers are invited to consult [123]
for a thorough discussion about the choice of the parameters. There are many
congruential generators based on the linear congruential generator:

(1) Power generator:
zj = (zj_1)* (mod n), j=1,2,-- (3.28)

where (d,n) are parameters describing the generator and xg is the seed.
There are two important special cases of the power generator, both oc-
curring when n = pgq is a product of two distinct odd primes.

(i) The RSA® Generator: This case occurs when ged(d, ¢(n)) = 1, where
#(n) is Euler’s ¢-function. The map = — 2 (mod n) is one-to-one on
(Z /nZ)*, and this operation is the encryption operation of the RSA
public-key cryptosystem, where the pair (d,n) is publicly known.
This special case of the power generator is called the RSA generator.
For example, let p = 13, ¢ = 23 and d = 17, so that n = 299,
#(299) = 264 and gcd(299,17) = 1. Let also o = 6. Then by the
RSA generator

370:6,

;L’J = 1‘}31 (mod 299), ,7 =]-;27' T

% RSA stands for three computer scientists Rivest, Shamir and Adleman [209],
who invented the widely used RSA public-key cryptosystem in the 1970s, which
will be studied in the next section. The RSA generator has essentially the same
idea as the RSA cryptosystem.

330 3. Applied Number Theory in Computing/Cryptography

we have the following random sequence:

r; = x5 (mod299) = =z =6'7=288 (mod 299)
ry = 7 (mod299) = =z, =288'"=32 (mod 299)
r3 = 3" (mod299) = x3=32'"=210 (mod 299)
ry = zi7 (mod299) = =z, =210'" =292 (mod 299)
rs = zi7 (mod299) = z4=292'" =119 (mod 299)
re = zi' (mod299) = x4=119"" =71 (mod 299)
r7 = x5 (mod299) = x;=71""=41 (mod 299)
g = o5 (mod299) = x5 =41""=123 (mod 299)
r9 = 7 (mod299) = z9=123'" =197 (mod 299)
190 = ' (mod 299) = x10=197""=6 (mod 299)
1, = 75 (mod299) = =;; =6 =288 (mod 299).

Thus, the length of this random number sequence generated by the
RSA generator is 10. That is [= 10.

(ii) The square generator: This case occurs when d = 2 and n = pq
with p = ¢ = 3 (mod 4); we call this the square generator. In this
case, the mapping z; — (z;_1)? (mod n) is four-to-one on (Z /nZ)*.
An even more special case of the square generator is the quadratic
residues generator:

y =2 (mod n) (3.29)

for some z.

(2) Discrete exponential generator:
zj; =¢%"' (modn), j=1,2,-- (3.30)

where (g,n) are parameters describing the generator and zo the seed.
A special case of the discrete exponential generator is that when n is
an odd prime p, and g is a primitive root modulo p; then the problem
of recovering z;_; given by (x;,g,n) is the well-known hard discrete
logarithm problem.

Note that simpler sequences of random numbers can be combined to pro-
duce complicated ones by using hashg and composition functions. For more
information on this topic, see Lagarias [136] and the references therein.

In some cases, for example, in stream-cipher cryptography (Zeng [265]),
a stream of random bits rather than a sequence of random digits (numbers)
will be needed. We list in the following some of the widely used random
bit generators (more random bit generators can be found, for example, in
Lagarias [136]):

3.2 Computer Systems Design 331

(1) RSA bit generator: Given k > 2 and m > 1, select odd primes p and ¢
uniformly from the range 2F < p, ¢ < 2¥*! and form n = pq. Select e
uniformly from [1,7n] subject to ged(e, p(n)) = 1. Set

zj=(x;—1)° (modn), j=1,2,--- (3.31)
and let the bit z; be given by
zi=w; (mod?2), j=1,2,---. (3.32)

Then {z; : 1 <j <k™ +m} are the random bits generated by the seed
xo of the length 2k bits.

(2) Rabin’s modified bit generator: Let k& > 2, and select odd primes p and
q uniformly from primes in the range 2* < p, ¢ < 2¥*! and form n = pq,
such that p = ¢ = 3 (mod 4) (this assumption is used to guarantee that
—1 is a quadratic nonresidue for both p and ¢). Let

(r;_1)* (mod n), if it lies in [0,n/2),
zp=4{ (3.33)
n—(xzj_1)? (mod n), otherwise,
so that 0 < z; < n/2, and the bit z; be given by
zij=xz; (mod2), j=1,2---. (3.34)

Then {z; : 1 <j < k™ +m} are the random bits generated by the seed
xo of the length 2k bits.

(3) Discrete exponential bit generator Let k¥ > 2 and m > 1, and select

an odd prime p uniformly from primes in the range [2¥, 2¥+1] provided
with a complete factorization of p — 1 and a primitive root g. Set

Lj Egzj71 (mOd p)7 .] = 1727"' (335)

and let the bit z; be the most significant bit
s
= [2—,@] (mod 2). (3.36)

Then {z; : 1 <j <Ek™ +m} are the random bits generated by the seed
Zo.

(4) Elliptic curve bit generator: Elliptic curves, as we have already seen, have
applications in primality testing and integer factorization. It is interesting
to note that elliptic curves can also be used to generate random bits;
interested readers are referred to Kaliski [116] for more information.

332 3. Applied Number Theory in Computing/Cryptography

3.3 Cryptography and Information Security

Modern cryptography depends heavily on number theory, with primality
testing, factoring, discrete logarithms (indices), and elliptic curves being
perhaps the most prominent subject areas.

MARTIN HELLMAN
Foreword to the present book

Cryptography was concerned initially with providing secrecy for written mes-
sages. Its principles apply equally well to securing data flow between comput-
ers, to digitized speech, and to encrypting facsimile and television signals. For
example, most satellites routinely encrypt the data flow to and from ground
stations to provide both privacy and security for their subscribers. In this sec-
tion, we shall introduce some basic concepts and techniques of cryptography
and discuss their applications to computer-based information security.

3.3.1 Introduction

Cryptography (from the Greek Kryptds, “hidden”, and grdphein, “to write”)
is the study of the principles and techniques by which information can be
concealed in ciphertexts and later revealed by legitimate users employing the
secret key, but in which it is either impossible or computationally infeasible
for an unauthorized person to do so. Cryptanalysis (from the Greek Kryptés
and analgein, “to loosen”) is the science (and art) of recovering information
from ciphertexts without knowledge of the key. Both terms are subordinate
to the more general term cryptology (from the Greek Kryptds and [dgos,
“word”). That is,

Cryptology ef Cryptography + Cryptanalysis,
and
Cryptography def Encryption + Decryption.

Modern cryptography, however, is the study of “mathematical” systems for
solving the following two main types of security problems:

(1) privacy,
(2) authentication.

A privacy system prevents the extraction of information by unauthorized
parties from messages transmitted over a public and often insecure chan-
nel, thus assuring the sender of a message that it will only be read by the

3.3 Cryptography and Information Security 333

intended receiver. An authentication system prevents the unauthorized injec-
tion of messages into a public channel, assuring the receiver of a message of
the legitimacy of its sender. It is interesting to note that the computational
engine, designed and built by a British group led by Alan Turing at Bletch-
ley Park, Milton Keynes to crack the German ENIGMA code is considered
to be among the very first real electronic computers; thus one could argue
that modern cryptography is the mother (or at least the midwife) of modern
computer science.

There are essentially two different types of cryptographic systems (cryp-
tosystems):

(1) Secret-key cryptographic systems (also called symmetric cryptosystems),
(2) Public-key cryptographic systems (also called asymmetric cryptosys-

tems).

Before discussing these two types of different cryptosystems, we present some
notation:

(1) Message space M: a set of strings (plaintext messages) over some alpha-
bet, that needs to be encrypted.

(2) Ciphertext space C: a set of strings (ciphertexts) over some alphabet,
that has been encrypted.

(3) Key space K: a set of strings (keys) over some alphabet, which includes
(i) The encryption key ey,.
(ii) The decryption key dy.
(4) The encryption process (algorithm) E: E,, (M) = C.
(5) The decryption process (algorithm) D: Dg, (C) = M.
The algorithms £ and D must have the property that

de(c) = de(Eek(M)) =M.

3.3.2 Secret-Key Cryptography

The legend that every cipher is breakable is of course absurd, though still
widespread among people who should know better.

J. E. LITTLEWOOD
Mathematics with Minimum ‘Raw Material’ [144]

In a conventional secret-key cryptosystem (see Figure 3.3), the same key
(i.e., e, =di, = k € K), called the secret key, is used in both encryption and
decryption. By same key we mean that someone who has enough information
to encrypt messages automatically has enough information to decrypt mes-
sages as well. This is why we call it secret-key cryptosystem, or symmetric

334 3. Applied Number Theory in Computing/Cryptography

Public and also insecure Cryptanalyst/Enemy

channel ’ M

Encryption Decryption

Message
M

Message
M

C = Ex(M) M = Di(C)

Secure channel

Key source
(Secret key)

Figure 3.3. Conventional secret-key cryptosystems

cryptosystem. The sender uses an invertible transformation f defined by
fiM—Lte (3.37)
to produce the cipher text
C=Ey(M), MeMandCEeC, (3.38)

and transmits it over the public insecure channel to the receiver. The key k&
should also be transmitted to the legitimate receiver for decryption but via a
secure channel. Since the legitimate receiver knows the key k, he can decrypt
C by a transformation f ! defined by

e —s oM, (3.39)

and obtain
Dy(C) =Dy(Ex(M))=M, CeCand M e M, (3.40)

the original plain-text message. There are many different types of secret-key
cryptographic systems. In what follows, we shall introduce some of these sys-
tems. (Note that the terms cryptographic systems, cryptographic schemes, or
ciphers are essentially the same concepts, and we shall use them interchange-
ably in this chapter.)

(I) Stream (Bit) Ciphers. In stream ciphers, the message units are bits,
and the key is usually produced by a random bit generator (see Figure 3.4).
The plaintext is encrypted on a bit-by-bit basis:

Mjo 1.1 0 0 0 1 11 1 1 1 1 0 1 0 1 O0---
Ki{1 o0 01 1 0 01 0 001 01T 1 1 0 1--
C |1 1111 01 01 1 1 0 1 1 0 1 1 1---

3.3 Cryptography and Information Security 335

Key source (Secret key)

Pseudorando Pseudorandom

Bit Generator Bit Generator

K ey K Key K
Plaintext Ciphertext Plaintext
M = ¢ @) M
Encryption Decryption

Figure 3.4. A stream cipher

The key is fed into the random bit generator to create a long sequence of
binary signals. This “key-stream” K is then mixed with the plaintext stream
M, usually by a bit-wise XOR, (Exclusive-OR, or modulo-2 addition) to pro-
duce the ciphertext stream C'. The decryption is done by XORing with the
same key stream, using the same random bit generator and seed:

c|r 1111 o0 1 0 1 1 1 0 1 1 0 1 1 1
K |1 1 1 0 1 0 1 1 1 1 1
M | 0 11 o0 0 01 1 1 1 1 1 1 0 1 0 1 O

(IT) Monographic (Character) Ciphers. Earlier ciphers (cryptosystems)
were based on transforming each letter of the plaintext into a different letter
to produce the ciphertext. Such ciphers are called character, substitution or
monographic ciphers, since each letter is shifted individually to another letter
by a substitution. First of all, let us define the numerical equivalents, as in
Table 3.2, of the 26 English capital letters, since our operations will be on

Table 3.2. Numerical equivalents of English capital letters

A°B C D E F G H I J L
oot
o 1 2 3 4 5 6 7 8 9 10 11 12
N O P Q R S T U V W Y
oot
13 14 15 16 17 18 19 20 21 22 23 24 25

336 3. Applied Number Theory in Computing/Cryptography

the numerical equivalents of letters, rather than the letters themselves. The
following are some typical character ciphers.

(1) Caesar® cipher: A simple Caesar cipher uses the following substitution

transformation:
f3=E3z(m) =m+ 3 (mod 26), 0<mée M <25, (3.41)
and
f3'=Ds(c) =c—3 (mod 26), 0<ceC <25, (3.42)

where 3 is the key for both encryption and decryption. Clearly, the corre-
sponding letters of the Caesar cipher will be obtained from those in Table
3.2 by moving three letters forward, as described in Table 3.3. Mathe-
matically, in encryption we just perform a mapping m — m + 3 mod 26
on the plaintext, whereas in decryption a mapping ¢ — ¢ — 3 mod 26 on
the ciphertext.

Table 3.3. The corresponding letters of the Caesar cipher

Shift 16 17 18

<>
<>
<>
<>
<>
<>
<>
<>

M A B C D E F G J K
e
Shit 3 4 5 6 7 & 9 10 11 12 13 14 15
e
c D E F G H I J K L M
M N O P Q R S T \%
R
19 20
I 1
T U

<>
>
<>
B O > A2
T = = <O
Q> v > N|TY >

Julius Caesar (100-44 BC) was a celebrated Roman general,
statesman, orator and reformer. The Caesar cipher, involving in
replacing each letter of the alphabet with the letter standing three
places further down the alphabet, was apparently used by Caesar
(he used the cipher in both his domestic and military efforts),
but he was also supposed to have invented the cipher himself.
Although the Caesar cipher was a simple cipher and particularly
simple to crack, it is a useful vehicle for explaining cryptographic
principles. (Photo by courtesy of Dr. Singh.)

3.3 Cryptography and Information Security 337

(2) Shift transformations: Slightly more general transformations are the fol-
lowing so-called shift transformations:

fe = Ex(m) =m+k (mod 26), 0<k,m<25, (3.43)

and
fi' =Di(c) =c—k (mod 26), 0<k,c< 25, (3.44)

(3) Affine transformations: More general transformations are the following
so-called affine transformations:

f(a,b) = E(a,b) (m) =am+b (mod 26), (345)
with a,b € Z the key, 0 < a,b,m < 26 and gcd(a,26) = 1, together with
f(jb) = D(a)(c) =a""(c — b) (mod 26), (3.46)

where a~! is the multiplicative inverse of a modulo 26 (even more gener-
ally, the modulus 26 could be any number greater than 26, but normally
chosen to be a prime number).

Example 3.3.1. In character ciphers, we have
E5(IBM) = LEP,
E,(NIST) = QLVW,
E;(ENCRYPTION) = LUJIXFWAPYU.
D,(YWHEBKNJEW) = CALIFORNIA,
D5(ZIBGVIY) = ENGLAND,
Dg(XYWLSJINCIH) = DECRYPTION.
Exercise 3.3.1. Decrypt the following character ciphertexts:
D7(VHFFNGBVTMBHG),
Dy (JVTLIZKP).
Example 3.3.2. Use the following affine transformations
f(7721) = 7m + 2]. (mOd 26)
and
f(‘7121) =7'(c—21) (mod 26)
to encrypt the message SECURITY and decrypt the message VLXIJH. To
encrypt the message, we have

S =18, 7-18 + 21 mod 26 = 17, S = R,
E =4, 7 -4+ 21 mod 26 = 23, E=X,
C =2, 7.2+ 21 mod 26 = 9, C=J,
U = 20, 7.20 + 21 mod 26 = 5, U=F,
R =17, 7-17 + 21 mod 26 = 10, R= K,
=35, 7 -8+ 21 mod 26 = 25, I=Z,
T =19, 7-19 + 21 mod 26 = 24, T=Y,
Y = 24, 7-24 + 21 mod 26 = 7, Y = H.

338 3. Applied Number Theory in Computing/Cryptography

Thus, E(7 51)(SECURITY) = RXJFKZYH. Similarly, to decrypt the message
VLXIJH, we have

V=21, 7=1.(21 — 21) mod 26 = 0, V= A,
L=11, 7=1. (11 — 21) mod 26 = 6, L=G,
X =23, 7-1.(13 — 21) mod 26 = 4, X = E,
=3, 7-1.(8 — 21) mod 26 = 13, I= N,
J =0, 7-1.(9 = 21) mod 26 = 2, J=C,
H=71, 7=1. (7 — 21) mod 26 = 24, H=Y.

Thus, D(ml)(VLXIJH) = AGENCY.
Exercise 3.3.2. Use the affine transformation
f(11’23) = llm + 23 (mod 26)

to encrypt the message THE NATIONAL SECURITY AGENCY. Use also
the inverse transformation

f(_li,23) =11""(c — 23) (mod 26)

to verify your result.

(III) Polygraphic (Block) Ciphers. Monographic ciphers can be made
more secure by splitting the plaintext into groups of letters (rather than a
single letter) and then performing the encryption and decryption on these
groups of letters. This block technique is called block ciphering. Block cipher
is also called a polygraphic cipher. Block ciphers may be described as follows:

(1) Split the message M into blocks of n-letters (when n = 2 it is called a

digraphic cipher) My, Ms,--- , Mj; each block M; for 1 < i < j is a block
consisting of n letters.

(2) Translate the letters into their numerical equivalents and form the ci-
phertext:
C, =AM, +B (mod N), i=12---,j (3.47)

where (A,B) is the key, A is an invertible n X n matrix with
gcd(det(A),N) = 1, B = (Bl,BQ,‘ v ,Bn)T, Cl = (01,02,' v ,Cn)T and
M; = (my, ma, -+ ,my)T. For simplicity, we just consider

(3) For decryption, we perform
M; = A '(C; — B) (mod N), (3.49)

where A™! is the inverse matrix of A. Again, for simplicity, we just
consider
M; = A"'C; (mod 26). (3.50)

3.3 Cryptography and Information Security 339

Example 3.3.3. Let
M =YOUR PIN NO IS FOUR ONE TWO SIX

be the plaintext and n = 3. Let also the encryption matrix be

11 2 19
A= 5 23 25
20 7 17

Then the encryption and decryption of the message can be described as fol-
lows:

(1) Split the message M into blocks of 3-letters and translate these letters
into their numerical equivalents:

Yy o U R P I NN O I S F
ottt

24 14 20 17 15 8 13 13 14 8§ 18 5

O U R ONE T W O S I X
ottt

14 20 17 14 13 4 19 22 14 18 8 23
(2) Encrypt these nine blocks in the following way:

24 22 17 5
Ci=A| 14 | = 6) Co=A| 15 |=| 6 |,

20 8 8 9

13 19 8 11
Cs=A| 13 |=] 12 |, Ci=A| 18 | = 7)

14 17 5 7

14 23 14 22
Cs=A| 20 |=1| 19 |, Ce=A| 13 | = 1)

17 7 4 23

19 25 18 1
Cr=A| 22 | =] 15 |, Cs=A 8 =1\ 17

14 18 23 1

340 3. Applied Number Theory in Computing/Cryptography

(3) Translating these into letters, we get the ciphertext C':
22 6 8 5 6 9 19 12 17 11

r 2 e
W G F G J T M R L H H

<>
<>

—

23 19 7 22 1 23 25 15 18 1 17 1

r+r:r ¢ttt 11z
X T H W B X Z P S B R B

(4) To recover the message M from C, we first compute A~! modulo 26:

-1

11 2 19 10 23 7
A*'t=1| 5 23 25 = 159 22
20 7 17 5 9 21

and then perform C; = A~1C; as follows:

24 5 17
M, = 14 |, Ma=A1'{6|=]| 15|,
20 9 8
19 13 11 8
Mg=A""'| 12 =] 13|, Mu=A""| 7 [=] 18 [,
17 14 7 5
23 14 22 14
Ms=A""'| 19 [=]2 |, Me=A"'| 1 |=]| 13|,
7 17 23 4
25 19 1 18
M;=A"'| 15 |=] 2|, M=A"'|17[=] 8 [.
18 14 1 23

So, we have:

3.3 Cryptography and Information Security

341

24 14 20 17 15 8 13 13
(RN ! 17 I 7
Y O U R P I N N
14 20 17 14 13 4 19 22
(RN RN I 7
O U R O N E T W
which is the original message.
Exercise 3.3.3. Let
313219
15106 25
A=1 10174 8 and B =
1 237 2

Use the block transformation

C; = AM; + B (mod 26)

to encrypt the following message

PLEASE SEND ME THE BOOK, MY CREDIT CARD NO IS
SIX ONE TWO ONE THREE EIGHT SIX ZERO

14

14

ONE SIX EIGHT FOUR NINE SEVEN ZERO TWO.

Use

M; = Afl(Ci - B) (mod 26)

to verify your result, where

26 13205

A7l =

0 10110

9 111522
9 226 25

18

23

(IV) Exponentiation Ciphers. The exponentiation cipher, invented by
Pohlig and Hellman in 1976, may be described as follows. Let p be a prime
number, M the numerical equivalent of the plaintext, where each letter of
the plaintext is replaced by its two digit equivalent, as defined in Table 3.4.
Subdivide M into blocks M; such that 0 < M; < p. Let k be an integer with
0 < k < pand ged(k, p—1) = 1. Then the encryption transformation for M;

is defined by

Ci = Ex(M;) = M} (mod p),

(3.51)

342 3. Applied Number Theory in Computing/Cryptography

Table 3.4. Two digit equivalents of letters

U A B C D E F G H J K L M
oot

00 01 02 03 04 05 06 O7 08 09 10 11 12 13

N O P Q R S T U V W
A 1t
14 15 16 17 18 19 20 21 22 23 24 25 26

<>
<>
<>
<>
<>
<>
<>

and the decryption transformation by
M; = D1 (C;) = CF ' = (M** ' = M; (mod p), (3.52)
where k- k=1 =1 (mod p — 1).

Example 3.3.4. Let p = 7951 and k = 91 such that ged(7951 —1,91) = 1.
Suppose we wish to encrypt the message

M = ENCRYPTION REGULATION MOVES TO A STEP CLOSER

using the exponentiation cipher. Firstly, we convert all the letters in the
message to their numerical equivalents via Table 3.4

0514 03 18 25 16 20 09 15 14 00 18 05 07 21 12 01 20 09 15 14 00
13 15 22 05 19 00 20 15 00 01 00 19 20 05 16 00 03 12 15 19 05 18

and group them into blocks with four digits

0514 0318 2516 2009 1514 0018 0507 2112 0120 0915 1400
1315 2205 1900 2015 0001 0019 2005 1600 0312 1519 0518

Then we perform the following computation

Cy = 0514 mod 7951 = 2174
Cs = 2516 mod 7951 = 7889
Cs = 1514 mod 7951 = 924
C7 = 0507 mod 7951 = 7868
Co = 0120°! mod 7951 = 726
Ch1 = 1400°! mod 7951 = 7114
C13 = 2205%! mod 7951 = 5000
C15 = 2015%! mod 7951 = 2300
Ci7 = 0019°! mod 7951 = 1607
Chg = 1600°! mod 7951 = 7143
Ca1 = 1519°! mod 7951 = 3937

So, the ciphertext of M is

Cs = 0318 mod 7951 = 4468
Cy = 2009 mod 7951 = 6582
Cs = 0018° mod 7951 = 5460
Cs = 2112°" mod 7951 = 7319
Cro = 915°! mod 7951 = 2890
C12 = 1315 mod 7951 = 5463
Cra = 1900°! mod 7951 = 438
C16 = 0001°! mod 7951 = 1
Cis = 2005 mod 7951 = 3509
Cao = 0312°! mod 7951 = 5648
Caz = 0518°! mod 7951 = 4736.

3.3 Cryptography and Information Security 343

2174 4468 7889 6582 0924 5460 7868 7319 0726 2890 7114
5463 5000 0438 2300 0001 1607 3509 7143 5648 3937 5064.

To decrypt the ciphertext C' back to the plaintext M, since the secret key k =
91 and the prime modulus p = 7951 are known, we compute the multiplicative
inverse k! of k£ modulo p — 1 as follows:

1 1
k= % (mod p—1) = ol (mod 7950) = 961 (mod 7950).
Thus, we have

M, = 2174°%1 mod 7951 = 514 M, = 4468°%1 mod 7951 = 318
M3 = 7889961 mod 7951 = 2516 My = 6582951 mod 7951 = 2009
My = 924°%1 mod 7951 = 1514 Mg = 5460751 mod 7951 = 18
My = 7868751 mod 7951 = 507 Mg = 7319951 mod 7951 = 2112
My = 726%%! mod 7951 = 120 Mo = 289095 mod 7951 = 915

My = 711461 mod 7951 = 1400 Mis = 54631 mod 7951 = 1315
M3 = 5000°! mod 7951 = 2205 M4 = 438%%1 mod 7951 = 1900

M5 = 23009 mod 7951 = 2015 Mg = 195! mod 7951 = 1

M7 = 1607°5! mod 7951 = 19 Mg = 3509%6! mod 7951 = 2005
Mg = 71431 mod 7951 = 1600 M3 = 564851 mod 7951 = 312

Ms = 3937951 mod 7951 = 1519 Mss = 473695 mod 7951 = 518.

Therefore, we have recovered the original message.

Exercise 3.3.4. Let p = 9137 and k = 73 so that ged(p — 1, k) = 1 and
k! mod (p—1) = 750. Use the exponentiation transformation C' = M* mod
p to encrypt the following message:

THE CESG IS THE UK NATIONAL TECHNICAL AUTHORITY
ON INFORMATION SECURITY.

THE NSA IS THE OFFICIAL INTELLIGENCE-GATHERING
ORGANIZATION OF THE UNITED STATES.

Use also M = C*~" mod p to verify your result.

Exercise 3.3.5 (A challenge problem). The following cryptogram was
presented by Edouard Lucas at the 1891 meeting of the French Association
for Advancement of Science (see Williams, [257]); it has never been decrypted,
and hence is suitable as a challenge to the interested reader.

XSJOD PEFOC XCXFM RDZME
JZCOA YUMTZ LTDNJ HBUSQ
XTFLK XCBDY GYJKK QBSAH
QHXPE DBMLI Z0YVQ PRETL

TPMUK XGHIV ARLAH SPGGP

344 3. Applied Number Theory in Computing/Cryptography

VBQYH TVIYJ NXFFX BVLCZ
LEFXF VDMUB QBIJV ZGGAI
TRYQB AIDEZ EZEDX KS

3.3.3 Data/Advanced Encryption Standard (DES/AES)

The most popular secret-key cryptographic scheme in use (by both govern-
ments and private companies) is the Data Encryption Standard (DES) —
DES was designed at IBM and approved in 1977 as a standard by the U.S.
National Bureau of Standards (NBS), now called the National Institute of
Standards and Technology (NIST). This standard, first issued in 1977 (FIPS
46 - Federal Information Processing Standard 46), is reviewed every five
years. It is currently specified in FIPS 46-2. NIST is proposing to replace
FIPS 46-2 with FIPS 46-3 to provide for the use of Triple DES (TDES) as
specified in the American National Standards Institute (ANSI) X9.52 stan-
dard. Comments were sought from industry, government agencies, and the
public on the draft of FIPS 46-3 before 15 April 15, 1999.

The standard (algorithm) uses a product transformation of transpositions,
substitutions, and non-linear operations. They are applied for 16 iterations
to each block of a message; the message is split into 64-bit message blocks.
The key used is composed of 56 bits taken from a 64-bit key which includes 8
parity bits. The algorithm is used in reverse to decrypt each ciphertext block
and the same key is used for both encryption and decryption. The algorithm
itself is shown schematically in Figure 3.5, where the @ is the “exclusive
or” (XOR) operator. The DES algorithm takes as input a 64-bit message
(plaintext) M and a 56-bit key K, and produces a 64-bit ciphertext C'. DES
first applies an initial fixed bit-permutation (IP) to M to obtain M'. This
permutation has no apparent cryptographic significance. Second, DES divides
M' into a 32-bit left half Ly and 32-bit right half Rg. Third, DES executes

the following operations for i = 1,2,---,16 (there are 16 “rounds”):
Li=R;,
(3.53)
Ri=Li1® f(Ri-1, K;),

where f is a function that takes a 32-bit right half and a 48-bit “round key”
and produces a 32-bit output. Each round key K; contains a different subset
of the 56-bit key bits. Finally, the pre-ciphertext C' = (Ry¢, L1s) is permuted
according to IP™! to obtain the final ciphertext C. To decrypt, the algo-
rithm is run in reverse: a permutation, 16 XOR rounds using the round key
in reverse order, and a final permutation that recovers the plaintext. All of
this extensive bit manipulations can be incorporated into the logic of a single

3.3 Cryptography and Information Security 345

Input - Plaintext (64 bits)

{

[Initial permutation j

{

Permuted U \L
input

Lo Ry
A "
* =

—

Li = Ry R, :L0+f(R07K1)

Lis = Ry3 Riy =Lz + f(R147K14)

+ (r

‘ Lis = Ry ‘ Ris = L1g + f(R14, K15)

i A e
G%)=
Ry = Li5 + f(Ris, Ki6) Lis = Rys
Preoutput \b Q/ Q/

[Inverse initial permutatior}

Output - Ciphertext (64 bits)

Figure 3.5. The Data Encryption Standard (DES) algorithm

346 3. Applied Number Theory in Computing/Cryptography

special-purpose microchip, so DES can be implemented very efficiently. How-
ever, the DES cracking project being undertaken by the Electronic Frontier
Foundation is able to break the encryption for 56 bit DES in about 22 hours.
As aresult, NIST has recommended that businesses use Triple DES® (TDES),
which involves three different DES encryption and decryption operations. Let
Ex (M) and D (C) represent the DES encryption and decryption of M and
C using DES key K, respectively. Each TDES encryption/decryption opera-
tion (as specified in ANSI X9.52) is a compound operation of DES encryption
and decryption operations. The following operations are used in TDES:

(1) TDES encryption operation: the transformation of a 64-bit block M
into a 64-bit block C' is defined as follows:
C = Ex;(Dk,(Erk, (M))). (3.54)

(2) TDES decryption operation: the transformation of a 64-bit block C
into a 64-bit block M is defined as follows:

M = D, (Ek, (D, (C)))- (3.55)

There are three options for the TDES key bundle (K, K2, K3):

(1) K1, K5, and K3 are independent keys.
(2) K1, K» are independent keys and K3 = K.
(3) K1 = Ky = Ks.

For example, if option 2 is chosen, then the TDES encryption and decryption
are as follows:

C:EKl(DK2(EK1(M)))’ (356)
M = Dk, (Ex,(Dk, (C)))- (3.57)

Interested readers are suggested to consult the current NIST report FIPS
46-3 [173] for the new standard of the TDES.

It is interesting to note that some experts say DES is still secure when used
properly. However, Edward Roback at the NIST said that the DES, which
uses 56-bit encryption keys, is no longer sufficiently difficult to decrypt. For
example, in February 1998, a team of engineers used a distributed “brute
force” decryption program to break a 56-bit DES key in 39 days, about three

5 Triple DES is a type of multiple encryption. Multiple encryption is a combination
technique aimed to improve the security of a block algorithm. It uses an algo-
rithm to encrypt the same plaintext block multiple times with multiple keys.
The simplest multiple encryption is the so-called double encryption in which an
algorithm is used to encrypt a block twice with two different keys — first encrypt
a block with the first key, and then encrypt the resulting ciphertext with the
second key: C' = Ey, (E, (M)). The decryption is just the reverse process of the
encryption: M = Dy, (Dy, (C

3.3 Cryptography and Information Security 347

times faster than it took another team just the year before, and more recently,
the team cracked DES in just over 22 hours earlier this year.

The U.S. Department of Commerce’s NIST had issued a formal call on 12
September 1997 for companies, universities, and other organizations to sub-
mit algorithm proposals for a new generation encryption standard for protect-
ing sensitive data well into the 21st century. This new Advanced Encryption
Standard (AES) will replace the DES and support encryption key size up to
256 bits and must be available royalty-free throughout the world. On 20 Au-
gust 1998 at the First AES Candidate Conference (AES1), NIST announced
fifteen (15) official AES candidate algorithms submitted by researchers from
twelve (12) different countries, including the United States, Australia, France,
Germany, Japan, Norway and the United Kingdom. Since then, cryptogra-
phers have tried to find ways to attack the different algorithms, looking for
weaknesses that would compromise the encrypted information. Shortly af-
ter the Second AES Candidate Conference (AES2) on 22-23 March 1999 in
Rome, Italy, NIST announced on 9 August 1999 that the following five (5)
contenders had been chosen as finalist for the AES, all are block ciphers:

(1) MARS: Developed by International Business Machines (IBM) Corpo-
ration of Armonk, New York, USA.

(2) RC6: Developed by RSA Laboratories of Bedford, Massachusetts, USA.
(3) Rijndael: Developed by Joan Daemen and Vincent Rijmen of Belgium.

(4) Serpent: Developed by Ross Anderson, Eli Biham and Lars Knudsen
of the United Kingdom, Israel and Norway, respectively.

(5) Twofish: Developed by Bruce Schneier, John Kelsey, Doug Whiting,
David Wagner Chris Hall and Niels Ferguson, of Counterpane Systems,
Minneapolis, USA.

These five finalist algorithms had received further analysis during a second,
more in-depth review period (August 1999-May 2000) in the selection of
the final algorithm for the FIPS (Federal Information Processing Standard)
AES. On 2 October 2000, the algorithm Rijndael, developed by Joan Dae-
men (Proton World International, Belgium) and Vincent Rijmen (Katholieke
Universiteit Leuven, Belgium) was finally chosen to be the AES. The strong
points of Rijndael are a simple and elegant design, efficient and fast on modern
processors, but also compact in hardware and on smartcards. These features
make Rijndael suitable for a wide range of applications. It will be used to
protect sensitive but ‘unclassified’ electronic information of the US govern-
ment. During the last year, a large number of products and applications has
been AES-enabled. Therefore, it is very likely to become a worldwide de facto
standard in numerous other applications such as Internet security, bank cards
and ATMs.

348 3. Applied Number Theory in Computing/Cryptography

3.3.4 Public-Key Cryptography

An obvious requirement of a good cryptographic system is that secret mes-
sages should be easy to encrypt and decrypt for legitimate users, and these
processes (or, at least, decryption) should be hard for everyone else. Num-
ber Theory has turned out to be an excellent source of computational prob-
lems that have both easy and (apparently) hard aspects and that can be used
as the backbone of several cryptographic systems.

CARL POMERANCE
Cryptology and Computational Number Theory [191]

In their seminal paper “New Directions in Cryptography” [66], Diffie®
and Hellman”, both in the Department of Electrical Engineering at Stanford
University at the time, first proposed the idea and the concept of public-key

Whitfield Diffie (1944-), a Distinguished Engineer at Sun Mi-
crosystems in Palo Alto, California, is perhaps best known for
his 1975 discovery of the concept of public-key cryptography, for
which he was awarded a Doctorate in Technical Sciences (Hon-
oris Causa) by the Swiss Federal Institute of Technology in 1992.
He received a BSc degree in mathematics from the Massachusetts
Institute of Technology in 1965. Prior to becoming interested in
cryptography, he worked on the development of the Mathlab sym-
bolic manipulation system — sponsored jointly at Mitre and the
MIT Artificial Intelligence Laboratory — and later on proof of correctness of com-
puter programs at Stanford University. Diffie was the recipient of the IEEE Infor-
mation Theory Society Best Paper Award 1979 for the paper New Directions in
Cryptography [66], the IEEE Donald E. Fink award 1981 for expository writing for
the paper Privacy and Authentication [67] (both papers co-authored with Martin
Hellman), and the National Computer Systems Security Award for 1996. (Photo
by courtesy of Dr. Simon Singh.)

Martin E. Hellman (1945-), the father of modern (public key)
cryptography, received his BEng from New York University in
1966, and his MSc and PhD from Stanford University in 1967 and
1969, respectively, all in Electrical Engineering. Hellman was on
the research staff at IBM’s Watson Research Center from 1968-69
and on the faculty of Electrical Engineering at MIT from 1969-71.
He returned to Stanford as a faculty member in 1971, where he
served on the regular faculty until becoming Professor Emeritus
in 1996. He has authored over 60 technical papers, five U.S. and
a number of foreign patents. His work, particularly the invention of public key
cryptography, has been covered in the popular media including Scientific American
and Time magazine. He was the recipient of an IEEE Centennial Medal (1984).
Notice that Diffie, Hellman and Merkle are the three joint inventors of public-
key cryptography, with Diffie and Merkle as Hellman’s research assistant and PhD
student. (Photo by courtesy of Prof. Hellman.)

3.3 Cryptography and Information Security 349

cryptography as well as digital signatures; they also proposed in the same
time a key-exchange protocol, based on the hard discrete logarithm problem,
for two parties to form a common private key over the insecure channel (see
Subsection 3.3.2).

Figure 3.6. The DHM crypto years: (Left to right) Merkle, Hellman and Diffie
(Photo by courtesy of Dr. Simon Singh)

It should be noted that Ralph Merkle®, deserves equal credit with Diffie
and Hellman for the invention of public key cryptography. Although his paper
Secure Communication Over Insecure Channels [158] was published in 1978,

Ralph C. Merkle (1952—) studied Computer Science at the Uni-
versity of California at Berkeley with a B.A. in 1974 and a M.S.
in 1977, and obtained his PhD in Electrical Engineering at Stan-
ford University in 1979 with the thesis entitled Secrecy, Authen-
tication, and Public Key Systems, with Prof. Martin Hellman as
his thesis advisor. Merkle co-invented public-key cryptography,
received the 1997 ACM Kanellakis Award (along with Leonard
Adleman, Whitfield Diffie, Martin Hellman, Ronald Rivest and
Adi Shamlr) the 1998 Feynman Prize in Nanotechnology for the-
ory, the 1999 IEEE Kobayashi Award, and the 2000 RSA Award in Mathematics.
He is currently a Principal Fellow at Zyvex working on molecular manufacturing
(also known as nanotechnology). (Photo by courtesy of Dr. Merkle.)

350 3. Applied Number Theory in Computing/Cryptography

two years later than Diffie and Hellman’s paper New Directions in Cryptog-
raphy, it was submitted in August 1975. Also, his conception of public key
distribution occurred in the Fall of 1974, again before Diffie and Hellman
conceived of public key cryptosystems.

Remarkably enough, just about one or two years later, three MIT com-
puter scientists, Rivest, Shamir, and Adleman, proposed in 1978 a practical
public-key cryptosystem based on primality testing and integer factorization,
now widely known as RSA cryptosystem (see Subsection 3.3.6). More specif-
ically, they based on their encryption and decryption on mod-n arithmetic,
where n is the product of two large prime numbers p and g. A special case
based on mod-p arithmetic with p prime, now known as exponential cipher,
had already been studied by Pohlig and Hellman in 1978 [176].

It is interesting to note that in December 1997 the Communication-
Electronics Security Group (CESG) of the British Government Communi-
cations Headquarters (GCHQ), claimed that public-key cryptography was
conceived by Ellis? in 1970 and implemented by two of his colleagues Cocks'®

9

s . James H. Ellis (1924-1997) was conceived in Britain but was
born in Australia. While still a baby, he returned to and grew
up in London. He studied Physics at Imperial College, Lon-
don and worked in the Post Office Research Station at Dol-
lis Hill. In 1965, Ellis, together with the cryptographic divi-
sion at Dollis Hill, moved to Cheltenham to join the newly
formed Communication-Electronics Security Group (CESG), a
special section of the GCHQ), devoted to ensuring the security
of British communications. Ellis was unpredictable, introverted
and a rather quirky worker, he was never put in charge of any
of the important CESG research groups, and he even didn’t really fit into the
day-to-day business of CESG. Nevertheless, he was a foremost British government
cryptographer. Ellis had a good reputation as a cryptoguru, and if other researchers
found themselves with impossible problems, they would knock his door in the hope
that his vast knowledge and originality would provide a solution. It was probably
because of this reputation that the British military asked him in the beginning of
1969 to investigate the key distribution problem, that led him to have the idea of
the non-secret encryption.

10

Clifford C. Cocks studied mathematics, specialized in number the-

ory, at the University of Cambridge and joined the CESG in

September 1973. While as a school student in Manchester Gram-

mar School, he represented Britain at the International Mathemat-

ical Olympiad in Moscow in 1968 and won a Silver prize. Before

joining CESG he knew very little about encryption and its inti-

mate connection with military and diplomatic communications,

so his mentor, Nick Patterson at CESG told him Ellis’s idea for

/i public-key cryptography. “Because I had been working in number

theory, it was natural to think about one-way functions, something you could do

but not undo. Prime numbers and factoring was a natural candidate,” explained by

Cocks. It did not take him too long to formulate a special case of the RSA public
key cryptography.

3.3 Cryptography and Information Security 351

and Williamson!! between 1973 and 1976 in CESG, by releasing the following
five papers:

[1] James H. Ellis, The Possibility of Non-Secret Encryption, January 1970,
9 pages.

[2] Clifford C. Cocks, A Note on Non-Secret Encryption, 20 November 1973,
2 pages.

[3] Malcolm J. Williamson, Non-Secret Encryption Using a Finite Field, 21
January 1974, 2 pages.

[4] Malcolm Williamson, Thoughts on Cheaper Non-Secret Encryption, 10
August 1976, 3 pages.

[5] James Ellis, The Story of Non-Secret Encryption, 1987, 9 pages.

The US Government’s National Security Agency (NSA) also made a similar
claim that they had public-key cryptography a decade earlier. It must be
pointed out that there are apparently two parallel universes in cryptogra-
phy, the public and the secret worlds. The CESG and even the NSA people
certainly deserve some kind of credit, but according to the “first to pub-
lish, not first to keep secret” rule, the full credit of the invention of public-
key cryptography goes to Diffie, Hellman and Merkle (along with Rivest,
Shamir and Adleman for their first practical implementation). It must also
be pointed out that Diffie and Hellman [66] in the same time also proposed
the marvelous idea of digital signatures, and in implementing their RSA cryp-
tosystem, Rivest, Shmire and Adleman also implemented the idea of digital
signatures, whereas none of the CESG released papers showed any evidence
that they had any thought of digital signatures, which is half of the Diffie-
Hellman-Merkle public-key cryptography invention!

In a public-key (non-secret key) cryptosystem (see Figure 3.7), the encryp-
tion key ey, and decryption key dj, are different, that is, ey # dj, (this is why
we call public-key cryptosystems asymmetric key cryptosystems). Since ey, is

Malcolm J. Williamson also attended the Manchester Gram-
mar School and studied mathematics at the University of
Cambridge, but joined the CESG in September 1974. Same as
Clifford Cocks, Malcolm Williamson also represented Britain
at the International Mathematical Olympiad in Moscow in
1968 but won a Gold prize. When Cocks first explained his
work on public-key cryptography to Williamson, Williamson
really didn’t believe it and tried to prove that Cocks had
made a mistake and that public-key cryptography did not
really exist. Remarkably enough, Williamson failed to find a mistake, instead he
found another solution to the problem of key distribution, at roughly the same time
that Prof. Martin Hellman discovered it. (Photos of Ellis, Cocks and Williamson
by courtesy of Dr. Simon Singh.)

352 3. Applied Number Theory in Computing/Cryptography

Public and also insecure Cryptanalyst/Enemy
channel ’ M

Encryption Decryption

M = Dgy, (C)

Message

Message
M

M

C =B, (M)

Key kource 1 Key source 2
Encryption key Decryption key
(Public key) (Private key)

Figure 3.7. Modern public-key cryptosystems (ex # dx)

only used for encryption, it can be made public; only dj must be kept a se-
cret for decryption. To distinguish public-key cryptosystems from secret-key
cryptosystems, ey, is called the public key, and dj, the private key; only the key
used in secret-key cryptosystems is called the secret key. The implementation
of public-key cryptosystems is based on trapdoor one-way functions.

Definition 3.3.1. Let S and T be finite sets. A one-way function
f: S>T (3.58)
is an invertible function satisfying

(1) f is easy to compute, that is, given z € S, y = f(z) is easy to compute.

(2) f71, the inverse function of f, is difficult to compute, that is, given
y €T,z = f~1(y) is difficult to compute.

(3) f!is easy to compute when a trapdoor (i.e., a secret string of infor-
mation associated with the function) becomes available.

A function f satisfying only the first two conditions is also called a one-to-
one one-way function. If f satisfies further the third condition, it is called a
trapdoor one-way function.

Example 3.3.5. The following functions are one-way functions:

(1) f: pg — nis a one-way function, where p and ¢q are prime numbers. The
function f is easy to compute since the multiplication of p and ¢ can be
done in polynomial time. However, the computation of f !, the inverse of
f is an extremely difficult problem (this is the well-known difficult integer
factorization problem); there is no efficient algorithm to determine p and
q from their product pgq, in fact, the fastest factoring algorithm NFS runs
in subexponential time.

3.3 Cryptography and Information Security 353

(2) fg,v : '+ ¢g” mod N is a one-way function. The function f is easy to
compute since the modular exponentiation g* mod N can be performed
in polynomial time. But the computation of f~!, the inverse of f is
an extremely difficult problem (this is the well-known difficult discrete
logarithm problem); there is no efficient method to determine z from the
knowledge of g* mod N and g and N.

(3) fe.n : @ = ¥ mod N is a trapdoor one-way function, where N = pq
with p and ¢ primes, and kk' = 1 (mod ¢(N)). It is obvious that f
is easy to compute since the modular exponentiation z* mod N can be
done in polynomial time, but f~1, the inverse of f (i.e., the kth root of z
modulo N) is difficult to compute. However, if k', the trapdoor is given,
f can be easily inverted, since (a:’”)’”’ = .

Remark 3.3.1. The discrete logarithm problem and the integer factoriza-
tion problem are the most important difficult number-theoretic problems on
which to build one-way functions in practice. Of course, there might exist
some other problems which can be used to build one-way functions. One
such problem is the so-called Quadratic Residuosity Problem (QRP), that
can be simply stated as follows (recall that an integer a is a quadratic residue
modulo n if ged(a,n) = 1 and if there exists a solution z to the congruence

r? = a (mod n)):

Given integers a and n, decide if a is a quadratic residue modulo n.

If n = pis an odd prime, then by Euler’s criterion (Theorem 1.6.26), a is a

quadratic residue of p if and only if a®1/2 = 1 (mod p). What about if n

is an odd composite? In this case, we know that a is a quadratic residue of

n if and only if it is quadratic residue modulo every prime dividing n. It is
a a

evident that if (—) = —1, then <—> = —1 for some i, and a is a quadratic
n bi

nonresidue modulo n. On the other hand, even if (2) = 1, it may be possible

for a to be a quadratic nonresidue modulo n. This is precisely the case that
is regarded by some researchers as an intractable problem, since the only
method we know for determining quadratic residuosity in this case requires
that we first factor n. Because of our inability to solve the quadratic resid-
uosity problem without factoring, several researchers have proposed cryp-
tosystems whose security is based on the difficulty of determining quadratic
residuosity. Whether it is in fact intractable (or at least equivalent to factoring
in some sense) remains a very interesting question (McCurley [151]). We shall
introduce an encryption scheme based the QRP in Section 3.3.7. There are
also some analogues such as elliptic curve analogues of discrete logarithms,
which can be used to build one-way functions in public-key cryptosystems;
we shall introduce these analogues and their cryptosystems in later sections
of this chapter.

354 3. Applied Number Theory in Computing/Cryptography

Remark 3.3.2. Public-key cryptosystems have some important advantages
over secret-key cryptosystems in the distribution of the keys. However, when
a large amount of information has to be communicated, it may be that the use
of public-key cryptography would be too slow, whereas the use of secret-key
cryptography could be impossible for the lack of a shared secret key. In prac-
tice, it is better to combine the secret-key and public-key cryptography into
a single cryptosystem for secure communications. Such a combined system is
often called a hybrid cryptosystem. A hybrid cryptosystem uses a public-key
cryptosystem once at the beginning of the communication to share a short
piece of information that is then used as the key for encryption and decryp-
tion by means of a “conventional” secret-key cryptosystem in later stages.
Such a cryptosystem is essentially a secret-key cryptosystem but still enjoys
the advantages of the public-key cryptosystems.

3.3.5 Discrete Logarithm Based Cryptosystems

The Diffie-Hellman-Merkle scheme, the first public-key cryptographic scheme,
is based on the intractable discrete logarithm problem, which can be described
as follows:

Input : a,b,n €N

Output : z € N with a® = b (mod n)
if such a z exists

The Diffie-Hellman-Merkle scheme has found widespread use in practical
cryptosystems, as for example in the optional security features of the NFS
file system of SunOS operating system. In this subsection, we shall introduce
some discrete logarithm based cryptosystems.

(I) The Diffie-Hellman-Merkle Key-Exchange Protocol. Diffie and
Hellman [66] in 1976 proposed for the first time a public-key cryptographic
scheme based on the difficult discrete logarithm problem. Their scheme was
not a public key cryptographic system (first proposed in [66]), but rather a
public key distribution system as proposed by Merkle [158]. Such a public key
distribution scheme does not send secret messages directly, but rather allows
the two parties to agree on a common private key over public networks to
be used later in exchanging messages through conventional cryptography.
Thus, the Diffie-Hellman-Merkle scheme has the nice property that a very
fast scheme such as DES or AES can be used for actual encryption, yet it
still enjoys one of the main advantages of public-key cryptography. The Diffie-
Hellman-Merkle key-exchange protocol works in the following way (see also
Figure 3.8):

3.3 Cryptography and Information Security 355

(1) A prime ¢ and a generator g are made public (assume all users have
agreed upon a finite group over a fixed finite field F),

(2) Alice chooses a random number a € {1,2,---,¢—1} and sends g* mod ¢
to Bob,

(3) Bob chooses a random number b € {1,2,---, ¢ — 1} and sends g® mod q
to Alice,

(4) Alice and Bob both compute g?* mod ¢ and use this as a private key for
future communications.

Alice chooses a Bob chooses b
(‘ (9,q) public ()
g% mod ¢
Alice Bob
¢® mod ¢
- -

Alice Computes: Bob Computes:

a b _ ,ab
(° mod q)® = g mod ¢ (¢* mod ¢)” = ¢*” mod ¢

Figure 3.8. The Diffie-Hellman-Merkel key-exchange scheme

Clearly, an eavesdropper has g, ¢, ¢ mod ¢ and g mod ¢, so if he can
take discrete logarithms, he can calculate ¢** mod ¢ and understand commu-
nications. That is, if the eavesdropper can use his knowledge of g, ¢, g* mod ¢
and ¢® mod ¢ to recover the integer a, then he can easily break the Diffie-
Hellman-Merkle system. So, the security of the Diffie-Hellman-Merkle system
is based on the following assumption:

Diffie-Hellman-Merkle Assumption: It is computationally infea-
sible to compute g from g and g°.

In theory, there could be a way to use knowledge of g* and g° to find g°.
But at present we simply cannot imagine a way to go from g and g® to g
without essentially solving the discrete logarithm problem.

Example 3.3.6. The following example, taken from McCurley [150], shows
how the Diffie-Hellman-Merkle scheme works in a real situation:

356 3. Applied Number Theory in Computing/Cryptography

(1) Let ¢ = (7' —1)/6 and p = 2- 739 - ¢ + 1. (It can be shown that both
p and ¢ are primes.)

(2) Alice chooses a random number residue 2 modulo p, computes 7° (mod
p), and sends the result to Bob, keeping x secret.

(3) B receives

7% = 12740218011997394682426924433432284974938204258693162165
45577352903229146790959986818609788130465951664554581442
80588076766033781

(4) Bob chooses a random number residue y modulo p, computes 7¥ (mod
p), and sends the result to Alice, keeping y secret.

(5) Alice receives

7Y = 18016228528745310244478283483679989501596704669534669731
30251217340599537720584759581769106253806921016518486623
62137934026803049

(6) Now both Alice and Bob can compute the private key 7*¥ (mod p).

McCurley offered a prize of $100 in 1989 to the first person to find the private
key constructed from the above communication.

Remark 3.3.3. McCurley’s 129-digit discrete logarithm challenge was actu-
ally solved on 25 January 1998 using the NFS method, by two German com-
puter scientists, Damian Weber at the Institut fiir Techno -und Wirtschafts-
mathematik in Kaiserslautern and Thomas F. Denny at the Debis IT Security
Services in Bonn.

As we have already mentioned earlier the Diffie-Hellman-Merkle scheme
is not intended to be used for actual secure communications, but for key-
exchanges. There are, however, several other cryptosystems based on discrete
logarithms, that can be used for secure message transmissions.

(IT) The ElGamal Cryptosystem for Secure Communications. In
1985, ElGamal proposed a public-key cryptosystem based on discrete loga-
rithms:

(1) A prime g and a generator g € I, are made public.

(2) Alice chooses a private integer a = a4 € {1,2,---,q — 1}. This a is the
private decryption key. The public encryption key is g* € F,.

(3) Suppose now Bob wishes to send a message to Alice. He chooses a
random number b € {1,2,---,¢ — 1} and sends Alice the following pair
of elements of F,:

(9", Mg*)

where M is the message.

3.3 Cryptography and Information Security 357

(4) Since Alice knows the private decryption key a, she can recover M from
this pair by computing ¢g*® (mod ¢) and dividing this result into the
second element, i.e., Mg2.

Remark 3.3.4. Someone who can solve the discrete logarithm problem in
F, breaks the cryptosystem by finding the secret decryption key a from the
public encryption key ¢g*. In theory, there could be a way to use knowledge of
g and g° to find g** and hence break the cipher without solving the discrete
logarithm problem. But as we have already seen in the Diffie-Hellman scheme,
there is no known way to go from g% and ¢® to g*® without essentially solving
the discrete logarithm problem. So, the ElGamal cryptosystem is equivalent
to the Diffie-Hellman key-exchange system.

(III) The Massey—Omura Cryptosystem for Message Transmis-
sions. This is another popular cryptosystem based on discrete logarithms;
it works in the following way:

(1) All the users have agreed upon a finite group over a fixed finite field F,
with ¢ a prime power.

(2) Each user secretly selects a random integer e between 0 and ¢ — 1 such
that ged(e,q — 1) = 1, and computes d = e~ ! mod (¢ — 1) by using the
extended Euclidean algorithm.

(3) Now suppose that user Alice wishes to send a secure message M to user

Bob, then they follow the following procedure:
(i) Alice first sends M¢4 to Bob,

(ii) On receiving Alice’s message, Bob sends M¢4¢8 back to Alice (note
that at this point, Bob cannot read Alice’s message M),

(iii) Alice sends M¢4¢5d4 = M€E to Bob,

(iv) Bob then computes M?2¢2 = M and hence recovers Alice’s original
message M.

358 3. Applied Number Theory in Computing/Cryptography

3.3.6 RSA Public-Key Cryptosystem

In 1978, just shortly after Diffie and Hellman proposed the first public-key
exchange protocol at Stanford, three MIT researchers Rivest!?, Shamir'® and
Adleman'# proposed the first practical public-key cryptosystem, now widely
known as the RSA public-key cryptosystem. The RSA cryptosystem is based
on the following assumption:

RSA Assumption: It is not so difficult to find two large prime
numbers, but it is very difficult to factor a large composite into its
prime factorization form.

12

Ronald L. Rivest (1948—) is currently the Webster Professor of
Electrical Engineering and Computer Science in the Department
of Electrical Engineering and Computer Science (EECS) at the
Massachusetts Institute of Technology (MIT), an Associate Direc-
tor of the MIT’s Laboratory for Computer Science, and a leader of
the lab’s Cryptography and Information Security Group. He ob-
tained a B.A. in Mathematics from Yale University in 1969, and
a Ph.D. in Computer Science from Stanford University in 1974.
Professor Rivest is an inventor of the RSA public-key cryptosys-
tem, a,nd a founder of RSA Data Security (now a subsidiary of Security Dynamics).
He has worked extensively in the areas of cryptography, computer algorithms, ma-
chine learning and VLSI design. (Photo by courtesy of Prof. Rivest.)

13
Adi Shamir (Born 1952) is currently Professor in the Depart-
ment of Applied Mathematics and Computer Science at the
Weizmann Institute of Science, Israel. He obtained his PhD
in Computer Science from the Weizmann Institute of Science
in 1977, with Prof. Zohar Manna on “Fixedpoints of Recur-
sive Programs”, and did his postdoc with Prof. Mike Pater-
son for a year in Computer Science at Warwick University in
England. He participated in developing the RSA public-key
cryptosystem, the Fiat-Shamir identification scheme, poly-
nomial secret sharing schemes, visual cryptosystems, lattice attacks on knapsack
cryptosystems, differential cryptanalysis, fault attacks on smart cards, algebraic
attacks on multivariate cryptosystems and numerous other cryptographic schemes
and techniques. (Photo by courtesy of Prof. Shamir.)

14

Leonard Adleman (Born 1945) received his BSc in mathematics
and PhD in computer science both from the University of Cali-
fornia at Berkeley in 1972 and 1976, respectively. He is currently
Professor in the Department of Computer Science at the Uni-
versity of Southern California. His main research activities are
in theoretical computer science with particular emphasis on the
complexity of number theoretic problems. Recently he has also
been involved in the development of DNA biological computers.
(Photo by courtesy of Prof. Adleman.)

3.3 Cryptography and Information Security 359

The system works as follows:
C = M°¢ (mod N) }

M=l (3.59)
= (mod N)

where

(1) M is the plaintext.

(2) C is the ciphertext.

(3) N = pq is the modulus, with p and ¢ large and distinct primes.

(4) e is the public encryption exponent (key) and d the private decryption
exponent (key) , with ed =1 (mod ¢(N)). (N, e) should be made public,
but d (as well as ¢(IN)) should be kept secret.

Figure 3.9. The RSA crypto years: (Left to right) Shamir, Rivest and Adleman
(Photo by courtesy of Prof. Adleman)

Clearly, the function f : M — C' is a one-way trap-door function, since
it is easy to compute by the fast exponentiation method, but its inverse
f~':C = M is difficult to compute, because for those who do not know the
private decryption key (the trap-door information) d, they will have to factor
n and to compute ¢(n) in order to find d. However, for those who know d,
then the computation of f~! is as easy as of f. This exactly the idea of RSA
cryptography.

Suppose now the sender, say, for example, Alice wants to send a message
M to the receiver, say, for example, Bob. Bob will have already chosen a

360 3. Applied Number Theory in Computing/Cryptography

one-way trapdoor function f described above, and published his public-key
(e, N), so we can assume that both Alice and any potential adversary know
(e, N). Alice splits the message M into blocks of |log N | bits or less (padded
on the right with zeros for the last block), and treats each block as an integer
z €{0,1,2,--- ,N — 1}. Alice computes

y = z° (mod N) (3.60)
and transmits y to Bob. Bob, who knows the private key d, computes
z =y? (mod N) (3.61)

where ed =1 (mod ¢(N)). An adversary who intercepts the encrypted mes-
sage should be unable to decrypt it without knowledge of d. There is no
known way of cracking the RSA system without essentially factoring N, so
it is clear that the security of the RSA system depends on the difficulty of
factoring N. Some authors, for example, Woll [259] observed that finding the
RSA decryption key d is random polynomial-time equivalent to factorization.
More recently, Pinch [184] showed that an algorithm A(N,e) for obtaining d
given N and e can be turned into an algorithm which obtains p and ¢ with
positive probability.

Example 3.3.7. Suppose the message to be encrypted is “Please wait for
me”. Let N = 5515596313 = 71593 - 77041. Let also e = 1757316971
with ged(e, N) = 1. Then d = 1/1757316971 = 2674607171 (mod (71593 —
1)(77041—1)). To encrypt the message, we first translate the message into its
numerical equivalent by the letter-digit encoding scheme described in Table
3.4 as follows:

M = 1612050119050023010920061518001305.

Then we split it into 4 blocks, each with 10 digits, padded on the right with
zeros for the last block:

M = (M, My, M3, My) = (1612050119 0500230109 2000061518 0013050000).
Now, we have

C) = 1612050119 757316971 = 763222127 (mod 5515596313)
Cy = 0500230109 757316971 = 1991534528 (mod 5515596313)
C3 = 2000061518 757316971 = 74889553 (mod 5515596313)
Cy = 0013050000 757316971 = 3895624854 (mod 5515596313)

That is,

C = (C1,Cs,C3,Cy) = (763222127,1991534528, 74882553, 3895624854).

3.3 Cryptography and Information Security 361

To decrypt the cipher text, we perform:

M, = 7632221272674607171 = 1612050119 (mod 5515596313)
My = 19915345282674607171 = 500230109 (mod 5515596313)
M = 748825532674607171 = 9000061518 (mod 5515596313)
M, = 38956248542671607171 = 13050000 (mod 5515596313)

By padding the necessary zeros on the left of some blocks, we get
M = (M, My, Ms, My) = (1612050119 0500230109 2000061518 0013050000)
which is ““Please wait for me”, the original plaintext message.

Example 3.3.8. We now give a reasonably large RSA example. In one of
his series of Mathematical Games, Martin Gardner [78] reported an RSA
challenge with US$100 to decrypt the following message C:

9686961375462206147714092225435588290575999112457_
4319874695120930816298225145708356931476622883989_
628013391990551829945157815154.

The public key consists of a pair of integers (e, N), where e = 9007 and N is
a “random” 129-digit number (called RSA-129):

1143816257578888676692357799761466120102182967212_
4236256256184293570693524573389783059712356395870-
5058989075147599290026879543541.

The RSA-129 was factored by Derek Atkins, Michael Graff, Arjen K. Lenstra,
Paul Leyland et al. on 2 April 1994 to win the $100 prize offered by RSA in
1977. Its two prime factors are as follows:

3490529510847650949147849619903898133417764638493_
387843990820577,

3276913299326670954996198819083446141317764296799_
2942539798288533.

They used the double large prime variation of the Multiple Polynomial
Quadratic Sieve (MPQS) factoring method. The sieving step took approx-
imately 5000 mips years, and was carried out in 8 months by about 600
volunteers from more than 20 countries, on all continents except Antarctica.
As we have explained in the previous example, to encrypt an RSA-encrypted
message, we only need to use the public key (IV, e) to compute

z° =y (mod N).

But decrypting an RSA-message requires factorization of NV if one does not
know the secret decryption key. This means that if we can factor N, then we
can compute the secret key d, and get back the original message by calculating

362 3. Applied Number Theory in Computing/Cryptography

y? =z (mod N).

Since now we know the prime factorization of NV, it is trivial to compute the
secret key d = 1/e mod ¢(N), which in fact is

1066986143685780244428687713289201547807099066339_
3786280122622449663106312591177447087334016859746_
2306553968544513277109053606095.

So we shall be able to compute
C?= M (mod N)

without any problem. To use the fast exponential method to compute
C? mod N, we first write d in its binary form didy - - - dsjze (Where size is
the number of the bits of d) as follows:

d=didy--dse =

100111011001111110010100110010001000001000001110100111100100110-
010011110100111000000000000011111110100001101010110001011101111_
010100001111101100000010000011101101010101111010101001111110110_
110100001111110100000011110100110001011001011001101001010001100-
100111010110000101110100101011010000011100000001110001110101010-
011011101000111101001110001101011010101010010011101010001001111_
000000100111010011000110111110101100100011001111

and perform the following computation:

M+1
for i from 1 to 426 do

M + M? mod N

if di=1then M < M -C mod N
print M

which gives the plaintext M:

2008050013010709030023151804190001180500191721050-
11309190800151919090618010705

and hence the original message:
THE MAGIC WORDS ARE SQUEAMISH OSSIFRAGE

via the encoding alphabet LI = 00, A =01, B = 02,--- , Z = 26. Of course, by
the public encryption key e = 9007, we can compute M€ = C (mod N); first
write e in the binary form e = ejes - --e;4 = 10001100101111, then perform
the following procedure:

C+1
for i from 1 to 14 do

C+ C?mod N

if e, =1then C < C - M mod N
print C'

3.3 Cryptography and Information Security 363

which gives the encrypted text C' at the beginning of this example:

9686961375462206147714092225435588290575999112457_
4319874695120930816298225145708356931476622883989_
628013391990551829945157815154.

Remark 3.3.5. In fact, anyone who can factor the integer RSA-129 can
decrypt the message. Thus, decrypting the message is essentially factoring
the 129-digit integer. The factorization of RSA-129 implies that it is possible
to factor a random 129-digit integer. It should be also noted that on 10 April
1996, Arjen Lenstra et al. also factored the following RSA-130:

1807082088687404805951656164405905566278102516769_
4013491701270214500566625402440483873411275908123_
03371781887966563182013214880557

which has the following two prime factors:

3968599945959745429016112616288378606757644911281_
0064832555157243,

4553449864673597218840368689727440886435630126320-
5069600999044599.

This factorization was found using the Number Field Sieve (NFS) factoring
algorithm, and beats the above mentioned 129-digit record by the Quadratic
Sieve (QS) factoring algorithm. The amount of computer time spent on this
130-digit NFS-record is only a fraction of what was spent on the old 129-digit
QS-record. More recently a group led by Peter Montgomery and Herman te
Riele found in February 1999 that the RSA-140:

2129024631825875754749788201627151749780670396327_
7216278233383215381949984056495911366573853021918_
316783107387995317230889569230873441936471

can be written as the product of two 70-digit primes:

3398717423028438554530123627613875835633986495969_
597423490929302771479,

626420018740128509615165494826444221930203 7178623
509019111660653946049.

This factorization was found using the Number Field Sieve (NFS) factoring
algorithm, and beats the 130-digit record that was set in April 1996, also with
the help of NFS. The amount of computer time spent on this new 140-digit
NFS-record is prudently estimated to be equivalent to 2000 mips years. For
the old 130-digit NFS-record, this effort is estimated to be 1000 mips years
(Te Riele [205]). Even more recently (August 26, 1999), Herman te Riele and
Stefania Cavallar et al. successfully factored (again using NFS) the RSA-155,
a number with 155 digits and 512 bits, which can be written as the product
of two 78-digit primes:

364 3. Applied Number Theory in Computing/Cryptography

10263959282974110577205419657399167590071656 78080-
38066803341933521790711307779,

10660348838016845482092722036001287867920795857598_
9291522270608237193062808643.

So, it follows from the above factorization results that

Corollary 3.3.1. The composite number (i.e., the modulus) N used in the
RSA cryptosystem should have more than 155 decimal digits.

Exercise 3.3.6. Below is an encrypted message (consisting of two blocks Cy
and CQ):

4660 4906 4350 6009 6392 3911 2238 7112
0237 3603 9163 4700 8276 8243 4103 8329
6685 0734 6202 7217 9820 0029 7925 0670
8833 7283 5678 0453 2383 8911 4071 9579

6506 4096 9385 1106 9741 5283 1334 2475
3966 4897 8551 7358 1383 6777 9635 0373
8147 2092 8779 3861 7878 7818 9741 5743
9185 7183 6081 9612 4160 0934 3883 0158

The public key used to encrypt the message is (e, N), where e = 9137 and N
is the following RSA-129:

1143816257578888676692357799761466120102182967212_
4236256256184293570693524573389783059712356395870_
5058989075147599290026879543541.

Decrypt the message. (Note that in the encryption process if ged(M;, N) # 1
for ¢ = 1,2, some dummy letter may be added to the end of M; to make
ged(M;,N) =1.)

Let us now consider a more general and more realistic case of secure
communications in a computer network with n nodes. It is apparent that

there are
(Z) =n(n—1)/2

ways of communicating between two nodes in the network. Suppose one of the
nodes (users), say, Alice (A), wants to send a secure message M to another
node, say, Bob (B), or vice versa. Then A uses B’s encryption key ep to
encrypt her message My

Ca = M5 mod Np (3.62)

and sends the encrypted message C' to B; on receiving A’s message My, B
uses his own decryption key dp to decrypt A’s message C:

3.3 Cryptography and Information Security 365

M4 = C%” mod Np. (3.63)

Since only B has the decryption key dpg, only B (at least from a theoretical
point of view) can recover the original message. B can of course send a secure
message M to A in a similar way. Figure 3.10 shows diagrammatically the
idea of secure communication between any two parties, say, for example, Alice
and Bob.

Public and insecure

channel
Mp = C'* mod Na Cp = My* mod Na
Decryption Encryption
B’s Message Mz B’s Message Mp
A MessageMp o |
Alice (ea, Na,da,eB, Np) Bob (ep, Np,dB,ea,Na)
A gty °
A’s Message Ma A’s Message Ma
Encryption Decryption
Ca = M5P mod Np M4 = C% mod Np

Public and insecure
channel

Figure 3.10. The RSA secure communications between two parties

A better example of a trap-door one-way function of the form used in the
RSA cryptosystem would use Carmichael’s A-function rather than Euler’s
¢-function, and is as follows:

y = f(z) = 2* (mod N) (3.64)

366 3. Applied Number Theory in Computing/Cryptography

where
N =pq (pand q are two large primes),

_ 1 a1 = _(=1)(g=1)
AN)=lem(p—-1, ¢—1) = ged(p—1, ¢ —1).
We assume that k and N are publicly known but p, g and A(N) are not. The
inverse function of f(x) is defined by

z=f""(y)=y" (mod N) with kk' =1 (mod). (3.66)
To show it works, we see
x = y® =
= (z
= =z

It should be easy to compute f1(y) = y* (mod N) if k' is known, provided
that f=1(y) exists (note that f~!(y) may not exist). The assumption un-
derlying the RSA cryptosystem is that it is hard to compute f~!(y) without
knowing k'. However, the knowledge of p, ¢ or A(N) makes it easy to compute
K.

Example 3.3.9. Suppose we wish to encrypt the plaintext message
NATURAL NUMBERS ARE MADE BY GOD.

We first translate all the letters in the message into their numerical equiv-
alents as in Table 3.4. Then we split the message into, for example, four
message blocks, each with 15 digits as follows:

(140020211801120, 014211302051800, 011805001301040, 500022500071504).

and perform the following computation steps:

(1) Select two primes p and ¢, compute N = pq and A(N):
p = 440334654777631,
q = 145295143558111
N = pqg = 63978486879527143858831415041
A(IN) = 710872076439183980322589770.
(2) Determine the keys k and k': we try to factorize mA(N) + 1 for m =

1,2,3,--- until we find a “good” factorization that can be used to obtain
suitable k£ and k':

3.3 Cryptography and Information Security 367

A(N) +1=1193-2990957 - 209791523 - 17107 - 55511

+ 1 =500807 - 647357777401277 - 17579 - 1871.
Suppose now we wish to use the 15th factorization 15A(N) + 1 to obtain

2A(N)+1=47-131-199 - 3322357 - 1716499 - 203474209
3A(N) +1=674683 - 1696366781 - 297801601 - 6257
4A(N)+1=17-53- 5605331 - 563022035211575351
5A(N) + 1 = 17450633 - 13017248387079301 - 15647
6A(N) + 1 = 1261058128567 - 49864411 - 2293 - 29581
TA(N)+1=19-261900238688120413803059389
8A(N) + 1 =15037114930441 - 378195992902921
9A(N) + 1 =11-13200581 - 8097845885549501 - 5441
10A(N) 4+ 1 = 7108720764391839803225897701
11A(N) + 1 = 2131418173 - 7417510211 - 494603657
12A(N) + 1 = 4425033337657 - 1927774158146113
13A(N) + 1 = 23 - 6796296973884340591 - 59120027
14X(N) 4+ 1 = 14785772846857861 - 673093599721
N)

(k, k'Y = (17579, 606580644324919489438469)

such that k&' = 1+ 15A(V).
(3) Encrypt the message = — ¥ mod N = y (using the fast modular expo-
nentiation method, for example, Algorithm 2.1.1):

140020211801120'7%7 mod N = 60379537366647508826042726177
014211302051800'77 mod N = 47215464067987497433568498485
011805001301040'757 mod N = 20999327573397550148935085516
500022500071504' 757 mod N = 37746963038639759803119392704.
(4) Decrypt the message y — y* mod N = #** mod N = z (again using,
for example, Algorithm 2.1.1):
60379537366647508826042726177% mod N = 140020211801120
47215464067987497433568498485% mod N = 014211302051800
20999327573397550148935085516% mod N = 011805001301040
37746963038639759803119392704% mod N = 500022500071504
where k' = 606580644324919489438469.

Remark 3.3.6. Compared with the conventional cryptosystems such as the
Data Encryption Standard (DES), the RSA system is very slow. For exam-
ple, the DES, when implemented with special-purpose chips, can be run at
speeds of tens of millions of bits per second, and even in software on modest
size machines can encrypt on the order of 10° bits per second, whereas the
RSA system, when implemented with the best possible special purpose chips,
can only encrypt at the rate of 10* or 2 - 10* bits per second, and software
implementations are limited to something on the order of 102 bits per second.
Thus, the RSA system is about 100 to 1000 times slower than conventional
cryptosystems.

368 3. Applied Number Theory in Computing/Cryptography

Now we are in a position to give a brief discussion of the existence of the
inverse function f~!(y) defined in (3.66) for all y. Let us first introduce a
useful result (Riesel [207]):

Theorem 3.3.1. If IV is a product of distinct primes, then for all a,
MNFL =4 (mod N). (3.67)

Note that if N contains multiple prime factors, then (3.67) need no longer
be true; say, for example, let N = 12 = 22 - 3, then 9*(12)+1 = 93 =9 (mod
12), but 10712+ = 10% = 4 # 10 (mod 12). Now, let k& and N have been
chosen suitably as follows:

N =pq, with p,q distinct primes (3.68)
a** =a (mod N), for all a. (3.69)

Then, by Theorem 3.3.1, the inverse function f~!(y), defined in (3.66), exists
for all y. It follows immediately from (3.67) that

a™MM* = ¢ (mod N), (3.70)

which is exactly the form needed in a RSA cryptosystem. For an arbitrary
integer N and m > 1, a necessary and sufficient condition for (3.70) to have
a solution a is that (private communications with William Freeman)

ged(a?, N) | a, (3.71)
or equivalently,
ged(a, N/d) =1, where d = ged(a, N). (3.72)

More generally (private communications with Peter Pleasants and Carl
Pomerance), a necessary and sufficient condition for

a™ MM = gk (mod N) (3.73)
is
ged(a**1, N) | a*, (3.74)
or equivalently,
ged(a, N/d) =1, where d = ged(a®, N). (3.75)

The proof for the more general case is as follows: Let p be prime and p® || N.
Let 3 be such that p® || a. We assume that p | N, that is a > 0. There are
three cases:

(1) B = 0: we have a™N)*+*k = ¥ (mod p®), by Euler’s theorem,

3.3 Cryptography and Information Security 369

(2) 0 < kB < a: we have a’ Z a* (mod p®) for all t > k, obviously,
(3) kB > a: we have a' = a* (mod p®) for all t > k, obviously.

We conclude that a™*M)** = gF (mod N) if and only if we are never in the
second case for all primes p | N. Never being in the second case is equivalent
to the condition ged(af*!, N) | a*.

Now let us return to the construction of a good trapdoor function (Brent
[37]) used in RSA:

Algorithm 3.3.1 (Construction of trapdoor functions). This algo-
rithm constructs the trapdoor function and generates both the public and the
secret keys suitable for RSA cryptography:

[1] Use Algorithm 3.3.3 or Algorithm 3.3.2 to find two large primes p and g,
each with at least 100 digits such that:
[1-1] |p — q] is large;
[1-2] p=—1 (mod 12),q = —1 (mod 12);
[1-3] The following values of p, p’', ¢’ and ¢" are all primes:

p=p-1)/2,
p"=(+1)/12,
¢ =(q-1)/2,

¢ =(¢g+1)/12.
[2] Compute N =pg and A\ = 2p'¢’.
[3] Choose a random integer k relatively prime to A such that & — 1 is not a
multiple of p’ or ¢'.
[4] Apply the extended Euclidean algorithm to k and A to find &' and X" such

that 0 < &' < X and
EE + 2\ = 1.

[5] Destroy all evidence of p, ¢, A and \.
[6] Make (k, N) public but keep k' secret.

It is clear that the most important task in the construction of RSA cryp-
tosystems is to find two large primes, say each with at least 100 digits. An
algorithm for finding two 100 digit primes can be described as follows:

Algorithm 3.3.2 (Large prime generation). This algorithm generates
prime numbers with 100 digits; it can be modified to generate any length of
the required prime numbers:

[1] (Initialization) Randomly generate an odd integer n with say, for example,
100 digits;

370 3. Applied Number Theory in Computing/Cryptography

[2] (Primality Testing — Probabilistic Method) Use a combination of the Miller—
Rabin test and a Lucas test to determine if n is a probable prime. If it is,
goto Step [3], else goto Step [1] to get another 100-digit odd integer.

[3] (Primality Proving — Elliptic Curve Method) Use the elliptic curve method
to verify whether or not n is indeed a prime. If it is, then report that n is
prime, and save it for later use; or otherwise, goto Step [1] to get another
100-digit odd integer.

[4] (done?) If you need more primes, goto Step [1], else terminate the algorithm.

How many primes with 100 digits do we have? By Chebyshev’s inequality
(1.167), if N is large, then

N N
92129 —— N 1.1056 ——. .
0921205 — < m(N) < 1.1056;— (3.76)
Hence
10* 00 10%
10100 100 10100

The difference m(101°°) — 7(10%) will give the number of primes with exactly
100 digits, we have

3.596958942 - 1097 < 7(10%%) — 7(10%?) < 4.076949099 - 10°7.

The above algorithm for large prime generation depends on primality test-
ing and proving. However, there are methods which do not rely on primality
testing and proving. One such method is based on Pocklington’s theorem
(Theorem 2.2.19), that can automatically lead to primes, say with 100 dig-
its (Ribenboim [199]). We re-state the theorem in a slightly different way as
follows:

Theorem 3.3.2. Let p be an odd prime, k& a natural number such that p
does not divide k¥ and 1 < k < 2(p + 1) and let N = 2kp + 1. Then the
following conditions are equivalent:

(1) N is prime.
(2) There exists a natural number a, 2 < a < N, such that
a* = —1 (mod N), and (3.77)
ged(a® +1,N) = 1. (3.78)

Algorithm 3.3.3 (Large prime number generation). This algorithm,
based on Theorem 3.3.2, generates large prime numbers without the use of
primality testing:

3.3 Cryptography and Information Security 371

[1] Choose, for example, a prime p; with d; = 5 digits. Find k; < 2(p; +1) such
that po = 2k1p; + 1 has do = 2d; = 10 digits or do = 2d; — 1 = 9 digits
and there exists a; < po satisfying the conditions a]f”’l = —1 (mod p») and

ged(a¥ 41, py) = 1. By Pocklington’s Theorem, py is prime.

[2] Repeat the same procedure starting from p, to obtain the primes ps, ps, - - .
In order to produce a prime with 100 digits, the process must be iterated
five times. In the last step, k5 should be chosen so that 2ksps + 1 has 100
digits.

As pointed out in Ribenboim [199], for all practical purposes, the above
algorithm for producing primes of a given size will run in polynomial time,
even though this has not yet been supported by a proof.

According to the Prime Number Theorem, the probability that a ran-
domly chosen integer in [1,N] is prime is ~ 1/InN. Thus, the expected
number of random trials required to find p (or p', or p'; assume that p,
p', and p" are independent) is conjectured to be O ((log N)3). Based on this
assumption, the expected time required to construct the above one-way trap-
door function is O ((log V)S).

Finally, in this subsection, we shall give a brief account of some possible
attacks on the RSA cryptosystem. We restrict ourselves to the simplified
version of RSA system. Let N, the RSA modulus, be the product of two
primes p and q. Let also e and d be two positive integers satisfying ed =
1 (mod ¢(N)), where ¢(N) = (p—1)(¢—1) is the order of the multiplicative
group (Z/NZ)*. Recall that the RSA system works as follows:

C = M° (mod N)

M = C? (mod N) }
where (N, e) is the public key for encryption, and (INV,d) the private key
for decryption. From an cryptanalytic point of view we would like to know
that given the triple (N,e,C), how hard (or how many ways) an enemy

cryptanalyst can break the RSA system. In what follows, we shall present
some possible ways of cracking the RSA scheme.

(1) Factoring N. The most obvious way of breaking the RSA system is to
factor N, since if an enemy cryptanalyst could factor IV, then he could
determine ¢(N) = (p — 1)(¢ — 1) and hence the private key d. But this
is not easy, since integer factorization is a computationally intractable
problem.

(2) Computing ¢(N) without factoring N. It is also obvious that if an enemy
cryptanalyst could compute ¢(N) then he could break the system by
computing d as the multiplicative inverse of e modulo ¢(N). However,
the knowledge of ¢(N) can lead to an easy way of factoring N, since

372 3. Applied Number Theory in Computing/Cryptography

p+g=n—¢(N)+1,

-0’ =@+q°—4n,

pzé[(p+q)+(p—q)],
1

¢g=3slp+a9)—-P-9].

2

Thus, breaking the RSA system by computing ¢(NN) is no easier than
breaking the system by factoring N.

(3) Determining d without factoring n or computing ¢(N). If N is large and
d is chosen from a large set, then a cryptanalyst should not be able to
determine d any easier than he can factor N. Again, a knowledge of d
enables N to be factored, since once d is known, ed — 1 (a multiple of
¢(N)) can be calculated; N can be factored using any multiple of ¢(NV).

(4) Computing the e*® root of C' modulo N. Clearly, the RSA decryption
process is just the computation of the e*® root of C' modulo N. That is,
the decryption problem is just the root finding problem. It is evident that
in the following congruence

C = M° (mod N),

once (N, e, C) is given, we could try substituting M =0,1,2,--- until a
correct M is found. In theory, it is possible to enumerate all elements of
(Z/NZ)*, since (Z/NZ)* is a finite set, but in practice, it is impossible
when N is large. However, if ¢(N) is known, then we can compute the
e root of C' modulo N fairly easily (see Algorithm 2.4.8 in Chapter 2).

So, all the above obvious methods of breaking the RSA system are closely
related to the integer factorization problem. In fact, Rivest, Shamir and Adle-
man [209] conjectured that

Conjecture 3.3.1 (RSA conjecture). Any method of breaking the RSA
cryptosystem must be as difficult as factoring.

There are some other possible attacks on the RSA cryptosystem, which
include:

(1) Wiener’s attack [253] on the short RSA private-key. It is important that
the private-key d should be large (nearly as many bits as the modulus
N); otherwise, there is an attack due to Wiener and based on properties
of continued fractions, that can find the private-key d in time polynomial
in the length of the modulus NV, and hence decrypt the message.

(2) Iterated encryption or fixed-point attack (Meijer [154] and Pinch [184]):
Suppose e has order r in the multiplicative group modulo A(N). Then
e’ =1 (mod A(N)), so M¢ = M (mod N). This is just the r** iterate
of the encryption of M. So we must ensure that r is large.

3.3 Cryptography and Information Security 373

It is interesting to note that the attacks discovered so far mainly illustrate
the pitfalls to be avoided when implementing RSA. RSA will be still secure if
the parameters such as p, g, e, and d are properly chosen. Readers who wish
to know more information about the attacks on the RSA cryptosystem are
suggested to consult Boneh’s recent paper “Twenty Years of Attacks on the
RSA Cryptosystem” [30], as well as an earlier paper by Rivest [208].

3.3.7 Quadratic Residuosity Cryptosystems

The RSA cryptosystem discussed in the previous subsection is deterministic
in the sense that under a fixed public-key, a particular plaintext M is always
encrypted to the same ciphertext C'. Some of the drawbacks of a deterministic
scheme are:

(1) It is not secure for all probability distributions of the message space. For
example, in RSA encryption, the messages 0 and 1 always get encrypted
to themselves, and hence are easy to detect.

(2) It is easy to obtain some partial information of the secret key (p,q)
from the public modulus n (assume that n = pq). For example, when
the least-significant digit of n is 3, then it is easy to obtain the partial
information that the least-significant digits of p and ¢ are either 1 and 3
or 7 and 9, as indicated as follows:

183 =3-61 253 =11-23
203=17-29 303 =3-101
213=3-71 323 =17-19.

(3) It is sometimes easy to compute partial information about the plaintext
M from the ciphertext C'. For example, given (C, e, n), the Jacobi symbol
of M over n can be easily deduced from C:

0)-GE) -G

(4) Tt is easy to detect when the same message is sent twice.

Probabilistic encryption, or randomized encryption, however, utilizes ran-
domness to attain a strong level of security, namely, the polynomial security
and semantic security, defined as follows:

Definition 3.3.2. A public-key encryption scheme is said to be polynomially
secure if no passive adversary can, in expected polynomial time, select two
plaintexts M; and Ms and then correctly distinguish between encryptions of
M, and M, with probability significantly greater that 1/2.

374 3. Applied Number Theory in Computing/Cryptography

Definition 3.3.3. A public-key encryption scheme is said to be semantically
secure if, for all probability distributions over the message space, whatever a
passive adversary can compute in expected polynomial time about the plain-
text given the ciphertext, it can also be computed in expected polynomial
time without the ciphertext.

Intuitively, a public-key encryption scheme is semantically secure if the ci-
phertext does not leak any partial information whatsoever about the plaintext
that can be computed in expected polynomial time. That is, given (C, e, n), it
should be intractable to recover any information about M. Clearly, a public-
key encryption scheme is semantically secure if and only if it is polynomially
secure.

In this subsection, we shall introduce a semantically secure cryptosys-
tem based on the quadratic residuosity problem. Recall that an integer a is
a quadratic residue modulo n, denoted by a € Q, if gcd(a,n) = 1 and
there exists a solution z to the congruence z? = a (mod n), otherwise a
is a quadratic nonresidue modulo n, denoted by a € @,,. The Quadratic
Residuosity Problem may be stated as:

Given positive integers a and n, decide whether or not a € Q.

It is believed that solving QRP is equivalent to computing the prime factor-
ization of n, so it is computationally infeasible. We have seen in Subsection
1.6.6 of Chapter 1 that if n is prime then
a
a€Q, = (—) =1, (3.79)
n

and if n is composite, then

acQ, — (%) =1, (3.80)
but “

a€Q, <~ (E) =1, (3.81)
however “

a€Q, <« (E) = -1 (3.82)
Let J, = {a € (Z/nZ)* : (&) = 1}, then @, = Jn — Qn. Thus, @, is

the set of all pseudosquares modulo n; it contains those elements of .J,, that
do not belong to @,. Readers may wish to compare this result to Fermat’s
little theorem discussed in Subsection 1.6.3 of Chapter 1 namely (assuming
ged(a,n) = 1),

n is prime = "' =1 (mod n), (3.83)

but
nis prime <& " !'=1 (mod n), (3.84)

however

3.3 Cryptography and Information Security 375

n is composite <= a""' #Z 1 (mod n). (3.85)
The Quadratic Residuosity Problem can then be further restricted to:

Given a composite n and an integer a € .J,, decide whether or not
a€ Q.

For example, when n = 21, we have Jo; = {1,4,5,16,17,20} and Q21 =
{1,4,16}, thus Qa1 = {5,17,20}. So, the QRP problem for n = 21 is actu-
ally to distinguish squares {1,4, 16} from pseudosquares {5,17,20}. The only
method we know for distinguishing squares from pseudosquares is to factor
n; since integer factorization is computationally infeasible, the QRP problem
is computationally infeasible. In what follows, we shall present a cryptosys-
tem whose security is based on the infeasibility of the Quadratic Residuosity
Problem; it was first proposed by Goldwasser and Micali [88] in 1984, under
the term probabilistic encryption.

Algorithm 3.3.4 (Quadratic residuosity based cryptography). This
algorithm uses the randomized method to encrypt messages and is based on the
quadratic residuosity problem (QRP). The algorithm divides into three parts:
key generation, message encryption and decryption.

[1] Key generation: Both Alice and Bob should do the following to generate
their public and secret keys:

[1-1] Select two large distinct primes p and ¢, each with roughly the same
size, say, each with 3 bits.

[1-2] Compute n = pq.
[1-3] Select a y € Z/nZ, such that y € Q,, and (%) =1. (y is thus a
pseudosquare modulo n).
[1-4] Make (n,y) public, but keep (p, q) secret.
[2] Encryption: To send a message to Alice, Bob should do the following:
[2-1] Obtain Alice’s public-key (n,y).

[2-2] Represent the message m as a binary string m = myms - --my, of
length £.

[2-3] For i from 1 to k do
[i] Choose at random an = € (Z/nZ)* and call it z;.

[ii] Compute ¢;:
z? modn, ifm; =0, (rs.)
¢ = (3.86)

yr7modn, ifm;=1, (r.ps.),

where r.s. and r.p.s. represent random square and random pseu-
dosquare, respectively.

376 3. Applied Number Theory in Computing/Cryptography

[iii] Send the k-tuple ¢ = (¢1,¢2,- - - , ¢) to Alice. (Note first that each
¢; is in integer with 1 < ¢; < n. Note also that since n is a 23-bit
integer, it is clear that the ciphertext ¢ is a much longer string than
the original plaintext m.)

[3] Decryption: To decrypt Bob's message, Alice should do the following:
[3-1] For i from 1 to k do

[i] Evaluate the Legendre symbols:

(3.87)
-)
q
[ii] Compute m;:
0, if ef=¢ef=1
m; = (3.88)
1, if otherwise.

That is, m; = 0 if ¢; € Q),,, otherwise, m; = 1. otherwise, set
m; = 1.

[3-2] Finally, get the decrypted message m = myma - - - my.

Remark 3.3.7. The above encryption scheme has the following interesting
features:

(1) The encryption is random in the sense that the same bit is transformed
into different strings depending on the choice of the random number z.
For this reason, it is called probabilistic (or randomized) encryption.

(2) Each bit is encrypted as an integer modulo n, and hence is transformed
into a 23-bit string.

(3) It is semantically secure against any threat from a polynomially bounded
attacker, provided that the QRP is hard.

Exercise 3.3.7. Show that Algorithm 3.3.4 takes O(3?) time to encrypt
each bit and O(3?) time to decrypt each bit.

Example 3.3.10. In what follows we shall give an example of how Bob
can send the message “HELP ME” to Alice using the above cryptographic
method. We use the binary equivalents of letters as defined in Table 3.5. Now
both Alice and Bob proceed as follows:

[1] Key Generation:
[1-1] Alice chooses (n,y) = (21, 17) as a public key, where n =21 = 3-7

is a composite, and y = 17 € Q2 (since 17 € Jy; but 17 € Qa1), s0
that Bob can use the public key to encrypt his message and send it

to Alice.

3.3 Cryptography and Information Security 377

[1-2] Alice keeps the prime factorization (3,7) of 21 as a secret; since
(3,7) will be used a private decryption key. (Of course, here we just
show an example; in practice, the prime factors p and ¢ should be at
last 100 digits.)

[2] Decryption:
[2-1] Bob converts his plaintext HELP ME to the binary stream M =
mimsa---M35:

00111 00100 01011 01111 11010 01100 00100

(To save space, we only consider how to encrypt and decrypt mg = 0
and mg = 1; readers are suggested to encrypt and decrypt the whole
binary stream).

[2-2] Bob randomly chooses integers z; € (Z/217Z)*. Suppose he chooses
zo = 10 and xz3 = 19 which are elements of (Z /217Z)*.

[2-3] Bob computes the encrypted message C' = cica--- ¢ from the
plaintext M = myms - --my using Equation (3.86). To get, for ex-
ample, ¢ and c3, Bob performs:

¢2 = 22 mod 21 = 102 mod 21 = 16, since mo = 0,
c3 =y 73 mod 21 =17-192 mod 21 =5, since mz = 1.

(Note that each ¢; is an integer reduced to 21, i.e., m; is a bit, but
its corresponding c¢; is not a bit but an integer, which is a string of
bits, determined by Table 3.5.)

[2-4] Bob then sends ¢, and ¢z along with all other ¢;’s to Alice.

[3] Decryption: To decrypt Bob’s message, Alice evaluates the Legendre
symbols <&> and <&> . Since Alice knows the prime factorization (p, q)

p q
of n, it should be easy for her to evaluate these Legendre symbols. For

example, for ¢ and c3, Alice performs:

Table 3.5. The binary equivalents of letters

Letter Binary Code | Letter Binary Code | Letter Binary Code
A 00000 B 00001 C 00010
D 00011 E 00100 F 00101
G 00110 H 00111 I 01000
J 01001 K 01010 L 01011
M 01100 N 01101 (0] 01110
P 01111 Q 10000 R 10001
S 10010 T 10011 U 10100
A% 10101 W 10110 X 10111
Y 11000 Z 11001 u 11010

378 3. Applied Number Theory in Computing/Cryptography

[3-1] Evaluates the Legendre symbols (%)

i (3)-(5)- ()
- (3)-(-0)--

[3-3] Further by Equation (3.88), Alice gets
mo =0, sinceehb=¢eh =1,
mz =1, since ef =ef = —1.

Remark 3.3.8. The scheme introduced above is a good extension of the
public-key idea, but encrypts messages bit by bit. It is completely secure
with respect to semantic security as well as bit security'®. However, a major
disadvantage of the scheme is the message expansion by a factor of logn bit.
To improve the efficiency of the scheme, Blum and Goldwasser [28] proposed
another randomized encryption scheme, in which the ciphertext is only longer
than the plainext by a constant number of bits; this scheme is comparable to
the RSA scheme, both in terms of speed and message expansion.

Exercise 3.3.8. RSA encryption scheme is deterministic and not semanti-
cally secure, but it can be made semantically secure by adding randomness to
the encryption process (Bellare and Rogaway, [22]). Develop an RSA based
probabilistic (randomized) encryption scheme that is semantically secure.

Several other cryptographic schemes, including digital signature schemes
and authentication encryption schemes are based on the quadratic residuosity
problem (QRP); interested readers are referred to, for example, Chen [47] and
Nyang [175] for some recent developments and applications of the quadratic
residuosity based cryptosystems.

15 Bit security is a special case of semantic security. Informally, bit security is
concerned with not only that the whole message is not recoverable but also that
individual bits of the message are not recoverable. The main drawback of the
scheme is that the encrypted message is much longer than its original plaintext.

3.3 Cryptography and Information Security 379

3.3.8 Elliptic Curve Public-Key Cryptosystems

We have discussed some novel applications of elliptic curves in primality test-
ing and integer factorization in Chapter 2. In this subsection, we shall intro-
duce one more novel application of elliptic curves in public-Key cryptography.
More specifically, we shall introduce elliptic curve analogues of several well-
known public-key cryptosystems, including the Diffie-Hellman key exchange
system and the RSA cryptosystem.

(I) Brief History of Elliptic Curve Cryptography. Elliptic curves have
been extensively studied by number theorists for more than one hundred
years, only for their mathematical beauty, not for their applications. However,
in the late 1980s and early 1990s many important applications of elliptic
curves in both mathematics and computer science were discovered, notably
applications of elliptic curves in primality testing (see Kilian [120] and Atkin
and Morain [12]) and integer factorization (see Lenstra [140]), both discussed
in Chapter 2. Applications of elliptic curves in cryptography were not found
until the following two seminal papers were published:

(1) Victor Miller, “Uses of Elliptic Curves in Cryptography”, 1986. (See
[163].)
(2) Neal Koblitz!6, “Elliptic Curve Cryptosystems”, 1987. (See [126].)

Since then, elliptic curves have been studied extensively for the purpose of
cryptography, and many practically more secure encryption and digital sig-
nature schemes have been developed based on elliptic curves. Now elliptic
curve cryptography (ECC) is a standard term in the field and there is a text-
book by Menezes [155] that is solely devoted to elliptic curve cryptography.
There is even a computer company in Canada, called Certicom, which is a
leading provider of cryptographic technology based on elliptic curves. In the
subsections that follow, we shall discuss the basic ideas and computational
methods of elliptic curve cryptography.

16

Neal Koblitz received his BSc degree in mathematics from Harvard
University in 1969, and his PhD in arithmetic algebraic geometry
from Princeton in 1974. From 1979 to the present, he has been at
the University of Washington in Seattle, where he is now a pro-
fessor in mathematics. In recent years his research interests have
been centered around the applications of number theory in cryp-
tography. He has published a couple of books in related to number
theory and cryptography, two of them are as follows: A Course
in Number Theory and Cryptography [128], and Algebraic Aspects of Cryptogra-
phy [129]. His other interests include pre-university math education, mathematical
development in the Third World, and snorkeling. (Photo by courtesy of Springer-
Verlag.)

380 3. Applied Number Theory in Computing/Cryptography

(IT) Precomputations of Elliptic Curve Cryptography. To implement
elliptic curve cryptography, we need to do the following precomputations:

[1] Embed Messages on Elliptic Curves: Our aim here is to do cryptography
with elliptic curve groups in place of F,. More specifically, we wish to
embed plaintext messages as points on an elliptic curve defined over a
finite field F,, with ¢ = p” and p € Primes. Let our message units m be
integers 0 < m < M, let also k be a large enough integer for us to be
satisfied with an error probability of 27" when we attempt to embed a
plaintext message m. In practice, 30 < k < 50. Now let us take xk = 30
and an elliptic curve E : y?> = 2% + ax + b over F,. Given a message
number m, we compute a set of values for x:

z={mk+j, j=01,2--}={30m, 30m+1, 30m+2, -} (3.89)

until we find 23 + az + b is a square modulo p, giving us a point
(z,v/x?* +ax +b) on E. To convert a point (z,y) on E back to a mes-
sage number m, we just compute m = |z/30]. Since z° + ax + b is a
square for approximately 50% of all z, there is only about a 27% prob-
ability that this method will fail to produce a point on E over F,. In
what follows, we shall give a simple example of how to embed a mes-
sage number by a point on an elliptic curve. Let E be y?> = 23 + 3z,
m = 2174 and p = 4177 (in practice, we select p > 30m). Then we calcu-
late # = {30- 2174+ j, j =0,1,2,---} until 2° + 3z is a square modulo
4177. We find that when j = 15:

r = 30-2174+15
= 65235
2® +3z = (302174 + 15)% + 3(30- 2174 + 15)
= 277614407048580
= 1444 mod 4177
= 38

So we get the message point for m = 2174:

(z, V23 + ax + b) = (65235, 38).

To convert the message point (65235, 38) on E back to its original message
number m, we just compute

m = [65235/30] = [2174.5] = 2174.

[2] Multiply Points on Elliptic Curves over F,: We have discussed the calcu-
lation of kP € E over Z/NZ. In elliptic curve public-key cryptography,
we are now interested in the calculation of kP € E over F;, which can be
done in O(log k(log q)*) bit operations by the repeated doubling method.

3.3 Cryptography and Information Security 381

If we happen to know N, the number of points on our elliptic curve E
and if k¥ > N, then the coordinates of kP on E can be computed in
O(log q)* bit operations [128]; recall that the number N of points on E
satisfies N < ¢+142,/q = O(q) and can be computed by René Schoof’s
algorithm in O(log ¢q)® bit operations.

[3] Compute Discrete Logarithms on Elliptic Curves: Let E be an elliptic
curve over Iy, and B a point on E. Then the discrete logarithm on E is the
problem: given a point P € E, find an integer x € Z such that B = P if
such an integer x exists. It is likely that the discrete logarithm problem
on elliptic curves over F, is more intractable than the discrete logarithm
problem in F,. It is this feature that makes cryptographic systems based
on elliptic curves even more secure than that based on the discrete log-
arithm problem. In the rest of this subsection, we shall discuss elliptic
curve analogues for some of the important public-key cryptosystems.

(ITII) Elliptic Curve Analogues of Some Public-Key Cryptosystems.
In what follows, we shall introduce elliptic curve analogues of four widely used
public-key cryptosystems, namely the Diffie-Hellman key exchange system,
the Massey—Omura, the ElGamal and the RSA public-key cryptosystems.

(1) Analogue of the Diffie-Hellman Key Exchange System:

[1] Alice and Bob publicly choose a finite field F, with ¢ = p” and p € Primes,
an elliptic curve E over F,, and a random base point P € E such that P
generates a large subgroup of E, preferably of the same size as that of E
itself.

[2] To agree on a secret key, Alice and Bob choose two secret random integers
a and b. Alice computes aP € E and sends aP to Bob; Bob computes
bP € E and sends bP to Alice. Both aP and bP are, of course, public
but a and b are not.

[3] Now both Alice and Bob compute the secret key abP € E, and use it for
further secure communications.

There is no known fast way to compute abP if one only knows P, aP and
bP — this is the discrete logarithm problem on E.

(2) Analogue of the Massey—Omura Cryptosystem:

[1] Alice and Bob publicly choose an elliptic curve E over F, with ¢ large,
and we suppose also that the number of points (denoted by N) is publicly
known.

[2] Alice chooses a secret pair of numbers (e4, da) such that dyes =1 (mod
N). Similarly, Bob chooses (eg, dp).

382 3. Applied Number Theory in Computing/Cryptography

[3] If Alice wants to send a secret message-point P € E to Bob, the procedure
is as follows:

[3-1] Alice sends e4 P to Bob,

[3-2] Bob sends eges P to Alice,

[3-3] Alice sends daegesP = egP to Bob,
[3-4] Bob computes dgepP = P.

Note that an eavesdropper would know esP, eges P, and egP. So if
he could solve the discrete logarithm problem on E, he could determine ep
from the first two points and then compute dg = 6]_31 mod N and hence get
P = dB (EBP).

(3) Analogue of the ElGamal Cryptosystem:

[1] Alice and Bob publicly choose an elliptic curve E over F, with ¢ = p”
and p € Primes, and a random base point P € E.

[2] Alice chooses a random integer r, and computes r,P; Bob also chooses
a random integer r, and computes r, P.

[3] To send a message-point M to Bob, Alice chooses a random integer k
and sends the pair of points (kP, M + k(ryP)).

[4] To read M, Bob computes
M + k(ryP) — ry(kP) = M. (3.90)

An eavesdropper who can solve the discrete logarithm problem on E can,
of course, determine ry from the publicly known information P and ry P. But
as everybody knows, there is no efficient way to compute discrete logarithms,
so the system is secure.

(4) Analogue of the RSA Cryptosystem:

RSA, the most popular cryptosystem in use, also has the following elliptic
curve analogue:

[1] N = pq is a public key which is the product of the two large secret primes
p and q.

[2] Choose two random integers a and b such that E : y*> = 2% + az + b
defines an elliptic curve both mod p and mod gq.

[3] To encrypt a message-point P, just perform eP mod N, where e is the
public (encryption) key. To decrypt, one needs to know the number of
points on E modulo both p and gq.

The above are some elliptic curve analogues of certain public-key cryp-
tosystems. It should be noted that almost every public-key cryptosystem has
an elliptic curve analogue; it is of course possible to develop new elliptic curve
cryptosystems which do not rely on the existing cryptosystems.

3.3 Cryptography and Information Security 383

Exercise 3.3.9. Work back from the descriptions of the elliptic curve ana-
logues of the ElGamal and the Massey—Omura cryptosystems discussed
above, to give complete algorithmic descriptions of the original ElGamal and
the original Massey—Omura public-key cryptosystems.

(IV) Menezes-Vanstone Elliptic Curve Cryptosystem. A serious
problem with the above mentioned elliptic curve cryptosystems is that the
plaintext message units m lie on the elliptic curve E, and there is no conve-
nient method known of deterministically generating such points on E. Fortu-
nately, Menezes'” and Vanstone'® had discovered a more efficient variation
[156]; in this variation which we shall describe below, the elliptic curve is
used for “masking”, and the plaintext and ciphertext pairs are allowed to be
in I}, x [rather than on the elliptic curve.

[1] Preparation: Alice and Bob publicly choose an elliptic curve E over [F,
with p > 3 is prime and a random base point P € E(F,) such that P
generates a large subgroup H of E(IF,), preferably of the same size as
that of E(IF,) itself. Assume that randomly chosen k € Z g and a € N
are secret.

[2] Encryption: Suppose now Alice wants to sent message
m = (my,ms) € (Z/pZ)" x (Z[pL)* (3.91)

to Bob, then she does the following:
[2-1] B = aP, where P and § are public.

Alfred J. Menezes is a professor of mathematics in the Department
of Combinatorics and Optimization at the University of Water-
loo, where he teaches courses in cryptography, coding theory, finite
fields, and discrete mathematics. He is actively involved in crypto-
graphic research, and consults on a regular basis for Certicom Corp.,
He completed the Bachelor of Mathematics and M.Math degrees in
1987 and 1989 respectively, and a Ph.D. in Mathematics from the
University of Waterloo (Canada) in 1992.

Scott A. Vanstone is one of the founders of Certicom, the first com-
pany to develop elliptic curve cryptography commercially. He devotes
much of his research to the efficient implementation of the elliptic
curve cryptography for the provision of information security services
¥ in hand-held computers, smart cards, wireless devices, and integrated
circuits. Vanstone has published more than 150 research papers and
several books on topics such as cryptography, coding theory, finite
fields, finite geometry, and combinatorial designs. Recently, he was
elected a Fellow of the Royal Society of Canada. Vanstone received a Ph.D. in
mathematics from the University of Waterloo in 1974.

384 3. Applied Number Theory in Computing/Cryptography

(2-2] (y1,y2) = kB

[2-3] ¢ = kP.

[2-4] ¢j = yjm; (mod p) for j =1,2.

[2-5] Alice sends the encrypted message ¢ of m to Bob:

¢ = (co,c1,C2). (3.92)

[3] Decryption: Upon receiving Alice’s encrypted message ¢, Bob calculates
the following to recover m:
[3-1] aco = (y1, y2)-
[3-1] m = (clyl_1 (mod p), cayy ' (mod p))

Example 3.3.11. The following is a nice example of Menezes-Vanstone
cryptosystem, taken from [165].

[1] Key generation: Let E be the elliptic curve given by y? = 23 + 42 + 4
over i3, and P = (1, 3) be a point on E. Choose E(Fi3) = H which is
cyclic of order 15, generated by P. Let also the private keys k& = 5 and
a = 2, and the plaintext m = (12,7) = (m1,m2).

[2] Encryption: Alice computes:

B=aP = 2(1,3) = (12,8)

(11, 92) = k6 = 5(12,8) = (10, 11)
co = kP = 5(1,3) = (10,2)
CL=Yyimy = 10-2=3 (HlOd 13)
Co = yYomo =11-7 =12 (mod 13).

Then Alice sends
¢ = (eo,c1,¢2) = ((10,2),3,12)

to Bob.
[3] Decryption: Upon receiving Alice’s message, Bob computes:

aco = 2(10,2) = (10,11) = (y1,2)
my = cy; = 12 (mod 13)
ma = coy, F =7 (mod 13).

Thus, Bob recovers the message m = (12, 7).

We have introduced so far the most popular public-key cryptosystems,
such as Diffie-Hellman-Merkle, RSA, Elliptic curve and probabilistic cryp-
tosystems. There are, of course, many other types of public-key cryptosys-
tems in use, such as Rabin, McEliece and Knapsack cryptosystems. Readers
who are interested in the cryptosystems which are not covered in this book
are suggested to consult Menezes et al. [157].

3.3 Cryptography and Information Security 385

3.3.9 Digital Signatures

The idea of public-key cryptography (suppose we are using the RSA public-
key scheme) can also be used to obtain digital signatures. Recall that in
public-key cryptography, we perform

C=E. (M), (3.93)
where M is the message to be encrypted, for message encryption, and
M = Dy, (C), (3.94)

where C is the encrypted message needed to be decrypted, for decryption. In
digital signatures, we perform the operations in exactly the opposite direction.
That is, we perform (see also Figure 3.11)

S =Dy, (M), (3.95)
where M is the message to be signed, for signature generation,
M = E,, (S), (3.96)

where S is the signed message needed to be verified, for signature verification.
Suppose now Alice wishes to send Bob a secure message as well as a digital

Public and also insecure Cryptanalyst/Enemy
channel ’ !
Message Signing Verification Message
M S = Dy, (M) M = E, () M

Key source 1 Key source 2
Decryption key Encryption key
(Private key) (Public key)

Figure 3.11. Digital signatures

signature. Alice first uses Bob’s public key to encrypt her message, and then,
she uses her private key to encrypt her signature, and finally sends out her

386 3. Applied Number Theory in Computing/Cryptography

Public and insecure

Decryption of Sp channel
Sp = WgP mod Np Wg = gB mod Np
Decryption of Mp Encryption of Sg

Mp = C%* mod Na = M5 mod Na

B’s Message Mp B’s Message Mp

and Signature Sp and Signature Sp

Encryption of Mp

Message Mp/Signature Spg
A ¢

Alice (6A,NA,dA,6B,NB) Bob (BB,NB,dB,eA,NA)

A > B
Message M 4 /Signature Sz
A’s Message Ma A’s Message M4
and Signature Sa and Signature Sa
Encryption of Ma
s N
Ca = M5P mod Np Ma = C% mod Np
N J
Encryption of Sa Decryption of Ma
s N
Wa = 5% mod N4 Sa = Wjy* mod Na
Public and insecure } g
channel Decryption of Sa

Figure 3.12. Sending encrypted messages and signatures using the RSA scheme
(the encrypted message and the signature are two different texts)

3.3 Cryptography and Information Security 387

message and signature to Bob. At the other end, Bob first uses Alice’s public
key to decrypt Alice’s signature, and then uses his private key to decrypt
Alice’s message. Figure 3.12 shows how A (Alice) and B (Bob) can send
secure message/signature to each other over the insecure channel.

Example 3.3.12 (Digital Signature). To verify that the $100 offer in Ex-
ample 3.3.8 actually came from RSA, the following signature was added:

S = 167178611503808442460152713891683982454369010323583112178_
350384469290626554487922371144905095786086556624965779748_
40004057020373.

It was encrypted by S = M? (mod N), where d is the secret key, as in Exam-
ple 3.3.8. To decrypt the signature, we use M = S¢ (mod N) by performing
the following procedure (also the same as in Example 3.3.8):

C+1

e = (10001100101111),

for ¢ from 1 to 14 do
C + C?mod N
if e[i] = 0 then C' <~ C * M mod N
print C'

which gives the following decrypted text:

6091819200019151222051800230914190015140500082114_
041805040004151212011819.

It translates to
FIRST SOLVER WINS ONE HUNDRED DOLLARS

Since this signature was encrypted by RSA’s secret key, it cannot be forged
by an eavesdropper or even by RSA people themselves.

In Example 3.3.12, the signature is a different text from the message, and
usually is appended to the encrypted message. We can, of course directly sign
the signature on the message. This can be done in the following way. Suppose
A (Alice) wants to send B (Bob) a signed message. Suppose also that

[1] Alice (A) has her own public and secret keys (e4, Na;d) as well as B’s
public key eg and Np from a public domain;

[2] Bob (B) has his own public and secret keys (eg, Ng;dp) as well as A’s
public key e4 and N4 from a public domain.

To send a signed message from A to B:

[1] Alice uses B’s public key eg and Np to encrypt her message M 4:

Ca = M5 mod Ng. (3.97)

388 3. Applied Number Theory in Computing/Cryptography

[2] Alice signs the message using her own secret key d4 directly on the
encrypted message:
Sa = C% mod Na, (3.98)

and sends this signed message to B over the network.
Upon receiving A’s signed message,

[1] B uses A’s public key e4 to decrypt A’s signature:
Ca =S mod Ny. (3.99)
[2] B further uses his own secret key dp to decrypt A’s encrypted message:
M4 = C%” mod Np. (3.100)

In this way, Bob can make sure that the message he has just received indeed
comes from A, since the signature of A’s message is encrypted by A’s own
secret key, which is only known to A. Once the message is sent out, A cannot
deny the message. Similarly, Bob can send a signed message to Alice. The
above process is shown in Figure 3.13.

Example 3.3.13 (Digital Signature). Suppose now Alice wants to send
Bob the signed message “Number Theory is the Queen of Mathematics”. The
process can be as follows:

[1] Suppose Alice has the following information at hand:

M 4= 1421130205180020080515182500091900200805001721050514001 -
506001301200805130120090319

N = 1807082088687404805951656164405905566278102516769401349_
1701270214500566625402440483873411275908123033717818879_
66563182013214880557 (130 digits)

= 3968599945959745429016112616288378606757644911281006483_

2555157243 - 45534498646735972188403686897274408864356301_
263205069600999044599

€= 2617

da= 9646517683975179648125577614348681987353875490740747744_
7102309852757971788848801635711139144032242624779107574_
0923050236448593109

and suppose Bob has the following information at hand:

Np= 1143816257578888676692357799761466120102182967212423625_
6256184293570693524573389783059712356395870505898907514.-
7599290026879543541 (129 digits)

= 3490529510847650949147849619903898133417764638493387843_
990820577 - 327691329932667095499619881908344614131776429_
67992942539798288533

3.3 Cryptography and Information Security 389

Public and insecure

Decrypt signature channel
d
Cp = S7¥ mod Np Sp = Cp” mod Np
Decryption Signature
Mp = C%* mod Na Cp = My mod Na
B’s message Mp Encryption
B’s Message Mp B’s Message Mp
A Signed Message B
Alice (BA,NA,dA,BB,NB) BOb (BB,NB,dB,eA,NA)
A— B
Signed Message
A’s Message Ma A’s Message M4
Encryption A’s message Ma
s 2
Ca = M5? mod Np Ma = C%F mod Np
N\ J
Signature Decryption
s 2
SA:CZA mod Na Ca = 85" mod N
N\ J

Public and insecure
channel

Decrypt signature

Figure 3.13. Sending encrypted and signed messages using the RSA scheme (the
signatures are directly made on the encrypted message)

390 3. Applied Number Theory in Computing/Cryptography

eg= 9007

dp= 1066986143685780244428687713289201547807099066339378628_
0122622449663106312591177447087334016859746230655396854._
4513277109053606095

[2] Alice first encrypts the message M4 using ep and Np to get
Ca = M3 mod Np

by the following process:

Ca+1
ep < (10001100101111),
for i from 1 to 14 do
C4 + C% mod Np
if ep[i] =1 then C4 + C4 - M4 mod Np
Save Cy

[3] Alice then signs the message C4 using d4 and N4 to get S4 = Cf(‘ mod
N4 via the following process:

Sa+1
da + (10110010---11010101)-
for i from 1 to 429 do
S+ S% mod Ny
if dA[l,i] =1 then S4 + S4-C4 mod Ny
Send Sy

[4] Upon receiving Alice’s message, Bob first decrypts Alice’s signature using
ea and Ny to get C4 = S%* mod N4 via the following process:

Cyh1
ea < (101000111001)2
for i from 1 to 12 do
Ca < C% mod Ny
if eA[i] =1then Cy < Cs -S4 mod Ny
Save Cy

[5] Bob then decrypts Alice’s message using dp and Np to get My =
C’iB mod Np via the following process:

My+—1

dp := (1001110110 ---1001111)>

for i from 1 to 426 do
MA «— M% mod NB
if dB[i] =0 then My < M4 -C4s mod Np
print M4

3.3 Cryptography and Information Security 391

Remark 3.3.9. Suppose Bob is sending an encrypted message to Alice. Nor-
mally, the encrypted message consists of a number of blocks; one of the blocks
is Bob’s signature. Alice can easily identify which block is the signature block,
since the ordinary decryption procedure for that block yields gibberish. In
practice, there are two ways for constructing Bob’s encrypted signature (Den-
son [60]), depending on the values of the moduli np and n4:

(1) f na < np, then
S = (MdB mod nB)eA modng, Mp= (SdA mod nA)eB mod ng.

The inequality n4 < np ensures that the expression in the parentheses
is not too large to be encrypted by Alice’s encryption key.
(2) If ng < np, then

Sp = (M4 mod nA)dB mod ng, Mpg = (5°% mod nB)d“ mod n 4.

The inequality n4 > np ensures that the expression in the parentheses
is not too large to be encrypted by Bob’s decryption key.

The above mentioned signature scheme is based on RSA cryptosystem.
Of course, a signature scheme can be based on other cryptosystem. In what
follows, we shall introduce a very influential signature scheme based of ElGa-
mal’s cryptosystem [69]; the security of such a signature scheme depends on
the intractability of discrete logarithms over a finite field.

Algorithm 3.3.5 (ElGamal Signature Scheme). This algorithm tries to
generate digital signature S = (a,b) for message m. Suppose that Alice wishes
to send a signed message to Bob.

[1] [EIGamal key generation] Alice does the following:

[1-1] Choose a prime p and two random integers g and z, such that both
g and z are less than p.

[1-2] Compute y = g* (mod p).

[1-3] Make (y, g,p) public (both g and p can be shared among a group of
users), but keep z as a secret.

[2] [EIGamal signature generation] Alice does the following:
[2-1] Choose at random an integers k such that ged(k,p— 1) = 1.

[2-2] Compute
a =g® (mod p),
(3.101)
b=k~ (m —za) (mod (p—1)).

392 3. Applied Number Theory in Computing/Cryptography

Now Alice has generated the signature (a,b). She must keep the random
integer, k, as secret.

[3] [ElGamal signature verification] To verify Alice's signature, Bob confirms
that
y®a’ = g™ (mod p). (3.102)

3.3.10 Digital Signature Standard (DSS)

In August 1991, the U.S. government’s National Institute of Standards and
Technology (NIST) proposed an algorithm for digital Signatures. The al-
gorithm is known as DSA, for Digital Signature Algorithm. The DSA has
become the U.S. Federal Information Processing Standard 186 (FIPS 186).
It is called the Digital Signature Standard (DSS), and is the first digital
signature scheme recognized by any government. The role of DSA /DSS is ex-
pected to be analogous to that of the Data Encryption Standard (DES). The
DSA/DSS is similar to a signature scheme proposed by Schnorr [220]; it is
also similar to a signature scheme of ElGamal [69]. The DSA is intended for
use in electronic mail, electronic funds transfer, electronic data interchange,
software distribution, data storage, and other applications which require data
integrity assurance and data authentication. The DSA/DSS consists of two
main processes:

(1) Signature generation (using the private key),
(2) Signature verification (using the public key).

A one-way hash function is used in the signature generation process to obtain
a condensed version of data, called a message digest. The message digest is
then signed. The digital signature is sent to the intended receiver along with
the signed data (often called the message). The receiver of the message and
the signature verifies the signature by using the sender’s public key. The same
hash function must also be used in the verification process. In what follows,
we shall give the formal specifications of the DSA/DSS.

Algorithm 3.3.6 (Digital Signature Algorithm, DSA). This is a vari-
ation of EIGamal signature scheme. It generates a signature S = (r,s) for the
message .

[1] [DSA key generation] To generate the DSA key, the sender performs the
following;:
[1-1] Find a 512-bit prime p (which will be public).

[1-2] Find a 160-bit prime ¢ dividing evenly into p—1 (which will be public).

3.3 Cryptography and Information Security 393

[1-3] Generate an element g € Z /pZ whose multiplicative order is ¢, i.e.,
99 =1 (mod p).

[1-4] Find a one-way function H mapping messages into 160-bit values.
[1-5] Choose a secret key z, with 0 < z < g,

[1-6] Choose a public key y, where y = ¢g* (mod p).
Clearly, the secret z is the discrete logarithm of y, modulo p, to the base g.

[2] [DSA Signature Generation] To sign the message m, the sender produces his
signature as (1, s), by selecting a random integer k € Z /qZ and computing

r = (g* (mod p)) (mod q),

s =k Y (H(m) + zr) (mod q).

(3.103)

[3] [DSA Signature Verification] To verify the signature (r, s) for the message
m from the sender, the receiver first computes:

t=s"! (mod gq), (3.104)

and then accepts the signature as valid if the following congruence holds:
r= (gH(m)ty’"t (mod p)) (mod g). (3.105)

If the congruence (3.105) does not hold, then the message either may have
been incorrectly signed, or may have been signed by an impostor. In this
case, the message is considered to be invalid.

There are, however, many responses solicited by the (US) Association
of Computing Machinery (ACM) [45], positive and negative, to the NIST’s
DSA. Some positive aspects of the DSA include:

(1) The U.S. government has finally recognized the utility and the useful-
ness of public-key cryptography. In fact, the DSA is the only signature
algorithm that has been publicly proposed by any government.

(2) The DSA is based on reasonable familiar number-theoretic concepts, and
it is especially useful to the financial services industry.

(3) Signatures in DSA are relatively short (only 320 bits), and the key
generation process can be performed very efficiently.

(4) When signing, the computation of r can be done even before the message
m is available, in a “precomputation” step.

Whilst some negative aspects of the DSA include:

(1) The DSA does not include key exchanges, and cannot be used for key
distribution and encryption.

394 3. Applied Number Theory in Computing/Cryptography

(2) The key size in DSA is too short; it is restricted to a 512-bit modulus
or key size, which is too short and should be increased to at least 1024
bits.

(3) The DSA is not compatible with existing international standards; for
example, the international standards organizations such as ISO, CCITT
and SWIFT all have accepted the RSA as a standard.

Nevertheless, the DSA is the only one publicly known government digital
signature standard.

We have already noted that almost every public-key cryptosystem has an
elliptic curve analogue. It should also be noted that digital signature schemes
can also be represented by elliptic curves over I, with ¢ a prime power or
over Z /nZ with n = pq and p, ¢ € Primes. In exactly the same way as that for
public-key cryptography, several elliptic curve analogues of digital signature
schemes have already been proposed (see, for example, Meyer and Miiller
[160]). In what follows we shall describe an elliptic curve analogue of the
DSA/DSS, called ECDSA.

Algorithm 3.3.7 (Elliptic Curve Digital Signature Algorithm). Let
E be an elliptic curve over I, with p prime, and let P be a point of prime order
g (note that the ¢ here is just a prime number, not a prime power) in E(FF,).
Suppose Alice wishes to send a signed message to Bob.
[1] [ECDSA key generation] Alice does the following:
[1-1] select a random integer z € [1, ¢ — 1],
[1-2] compute @ = z P,

[1-3] make @ public, but keep z as a secret.
Now Alice has generated the public key () and the private key z.

[2] [ECDSA signature generation] To sign a message m, Alice does the following:
[2-1] select a random integer k € [1, ¢ — 1],

[2-2] compute kP = (x1,y1), and r = z; (mod q). If » = 0, go to step
[2-1].

[2-3] compute k= mod gq.

[2-4] compute s = k~1(H(m) + zr) (mod q), where H(m) is the hash
value of the message. If s =0, go to step [2-1].
The signature for the message m is the pair of integers (7, s).

[3] [ECDSA signature verification] To verify Alice's signature (r, s) of the mes-
sage m, Bob should do the following:

[3-1] obtain an authenticated copy of Alice’s public key Q;

3.3 Cryptography and Information Security 395

[3-2] verify that (r,s) are integers in the interval [1, ¢ — 1], computes
kP = (z1,y1), and r = z; (mod gq).

[3-3] compute w = s~ (mod ¢) and H(m).

[3-4] compute u; = H(m)w (mod ¢) and uz = rw (mod q).
[3-5] compute u1 P + u2Q = (xo,y0) and v = x¢ (mod q).
[3-6] accept the signature if and only if v = r.

Exercise 3.3.10. Try to develop an elliptic curve analogue of an existing
signature scheme that you are familiar with for obtaining and checking digital
signatures.

3.3.11 Database Security

Databases pose a special challenge to the designer of secure information sys-
tems. Databases are meant to be shared. The sharing is often complex. In
many organizations, there are many “rules” concerning the access to different
fields (or parts) of a database. For example, the payroll department may have
access to the name, address and salary fields, while the insurance office may
have access to the health field of an individual. In this subsection, we shall
introduce a method for database protection; it encrypts the entire database
but the individual fields may be decrypted and read without affecting the
security of other fields in the database.
Let
D= (F,F, - ,F,) (3.106)

where D is the database and each Fj is an individual file (or record). As in
RSA encryption, each file in D can be regarded as an integer. To encrypt
D, we first select n distinct primes mq,ms, - ,m,, where m; > F;, for
i =1,2,---,n. Then by solving the following system of congruences:

C= F1 (mod ml),
C= F2 (mod THQ),
...... (3107)

C = F,, (mod my,),

we get C, the encrypted text of D. According to the Chinese Remainder
Theorem, such a C' always exists and can be found. Let

M =mims - my,
M, = M/mi, (3.108)
€; = Mi [M;l mod ml] 5

396 3. Applied Number Theory in Computing/Cryptography

fori =1,2,--- ,n. Then C can be obtained as follows:
C'=> ejF; (mod M), 0<C <M. (3.109)
i=1
The integers ej, ez, -+ ,e, are used as the write-keys. To retrieve the i-th

file F; from the encrypted text C of D, we simply perform the following
operation:

The moduli my, ms,--- ,m,, are called the read-keys. Only people knowing
the read-key m; can read file F;, but not other files. To read other files, for
example, Fj;o, it is necessary to know a read-key other than m;. We present
in the following an algorithm for database encryption and decryption.

Algorithm 3.3.8 (Database protection). Given D = (Fy, F, -+, Fy),
this algorithm will first encrypt the database D into its encrypted text C. To
retrieve information from the encrypted database C, the user uses the appropri-
ate read-key m; to read file Fj:

Part I: Database Encryption. The database administrators (DBA) perform the
following operations to encrypt the database D:

[1] Select n distinct primes my,ms,- - ,my, with m; > Fj;, for i =
1,2,-+ ,n.

[2] Use the Chinese Remainder Theorem to solve the following system of
congruences:

C= F1 (mod ml),
C= F2 (mod THQ),
...... (3_111)

and get
C=> ejF; (mod M), 0<C<M (3.112)
i=1

where
M =mimso -+ my,

Mi :M/mi,
€; :Mi [M»_

i 1Il'lOdTTLi],
fori=1,2,---,n.

[3] Distribute the read-key m; to the appropriate database user U;.

3.3 Cryptography and Information Security 397

Part 1l: Database Decryption. At this stage, the database user U; is supposed
to have access to the encrypted database C' as well as to have the read-key
m;, so he performs the following operation:

The required file F; should be now readable by user U;.

Example 3.3.14 (Database Encryption and Decryption). Let

D = <F17F27F37F47F5>
(198753,217926, 357918, 377761, 391028).

Choose five primes my, ms, mg, my and ms as follows:

my = 350377 > Fy = 198753,
me = 364423 > F, = 217926,
ms = 376127 > F, = 357918,
my = 389219 > F, = 377761,
ms = 391939 > F5 = 391028.

According to (3.111), we have:

() = C = 198753 (mod 350377)
(mod mg) = C = 217926 (mod 364423)
(mod ms) = C = 357918 (mod 376127)
(mod my) = C = 377761 (mod 389219)
() = C = 391028 ()

QaaQaaaq
I0e e
LR

mod 391939).

Using the Chinese Remainder Theorem to solve the above system of congru-

ences, we get
C = 5826262707691801601352277219.

Since 0 < C < M with

M = 350377 - 364423 - 376127 - 389219 - 391939
= 7326362302832726883024522697,

C' is the required encrypted text of D. Now suppose user Us has the read-key
mo = 364423. Then he can simply perform the following computation and
get Fy:

F, = C (mod m;).

Now

5826262707691801601352277219 mod 364423
217926
= F,

C (mod my)

398 3. Applied Number Theory in Computing/Cryptography

which is exactly what the user Us wanted. Similarly, a user can read Fj if he
knows ms, since

C (mod ms) 5826262707691801601352277219 mod 391939
= 391028

- F.

Remark 3.3.10. In Example 3.3.14, we have not explicitly given the com-
puting processes for the write keys e; and the encrypted text C; we give now
the detailed computing processes as follows:
e1 = M - (M1_1 mod ml)
= 20909940729079611056161 - (20909940729079611056161_1 mod 350377)
= 3040577211237653482509539493
€y = MQ . (]\4271 mod mg)
= 20104006341072673467439 - (20104006341072673467439’1 mod 364423)
= 2830382740740598479460334493 e3 = M3 - (M3_1 mod m3)
= 19478426975018349873911 - (19478426975018349873911_1 mod 376127)
= 1991883420892351476456012771
ey = My - (Méf1 mod m4)
= 18823239109171769320163 - (1882323910917176932016?f1 mod 389219)
= 6068028768384594103971626147
€5 = M5 . (M5_1 mod m5)
= 18692608550903908217923 - (18692608550903908217923_1 mod 391939)
= 721852464410256223651532491.

So

C = (e1F1 +exFo+ e3Fs3 + e Fy + esF5) mod M
= (3040577211237653482509539493 - 198753
+ 2830382740740598479460334493 - 217926
+ 1991883420892351476456012771 - 357918
+ 6068028768384594103971626147 - 377761
+ 721852464410256223651532491 - 391028)
mod 7326362302832726883024522697
= 5826262707691801601352277219.

Exercise 3.3.11. Let the database D be

D = (F,F,F;,F)
(9853, 6792, 3761, 5102).

and the four read keys be

3.3 Cryptography and Information Security 399

my = 9901 > F} = 9853,
my = 7937 > Fy = 6792,
my = 5279 > Fy = 3761,
my = 6997 > Fy; = 5102.

(1) What are the four write keys e;, e2, es and e4 used in the encryption
process?

(2) What is the encrypted text C' corresponding to D?

(3) If F; is changed from F; = 9853 to F} = 9123, what is the new value of
the encrypted text C?7

To protect a database, we can encrypt it by using encryption keys. To
protect encryption keys, however, we will need some different methods. In the
next subsection, we shall introduce a method for protecting the cryptographic
keys.

3.3.12 Secret Sharing

Liu [145] considers the following problem: eleven scientists are working on a
secret project. They wish to lock up the documents in a cabinet such that the
cabinet can be opened if and only if six or more of the scientists are present.
What is the smallest number of locks needed? What is the smallest number
of keys to the locks each scientist must carry? The minimal solution uses 462
locks and 252 keys. It is clear that these numbers are impractical, and they
become exponentially worse when the number of scientists increases. In this
section, we shall introduce an interesting method to solve similar problems.
It is called secret sharing and was first proposed by Shamir in 1979 (see
Mignotte [161] and Shamir [225]). The method can be very useful in the
management of cryptographic keys and the keys for accessing the password
file in a computer system.

Definition 3.3.4. A (k,n)-threshold scheme is a method for n people (or
parties) Py, P»,---, P, to share a secret S in such a way that the following
properties hold:

(1) k <,

(2) each P; has some information I;,

(3) knowledge of any k of the {I;, Is,--- ,I,} enables one to find S easily,
(4)

4) knowledge of less than k of the {I,, I5,---,I,} does not enable one to
find S easily.

Of course, there might be several ways to construct such a threshold
scheme, but perhaps the simplest is the one based on congruence theory
and the Chinese Remainder Theorem. It can be shown (Krana [134]) by the
Chinese Remainder Theorem that:

400 3. Applied Number Theory in Computing/Cryptography

Theorem 3.3.3. For all 2 < k < n, there exists a (k,n)-threshold scheme.

In what follows, we shall introduce an algorithm for constructing a (k,n)-
threshold scheme.

Algorithm 3.3.9 (Secret sharing). This algorithm is divided into two parts:
the first part aims to construct a secret set {I;, I, - ,I,}, whereas the second
part aims to find out the secret S by any k of the {I1, I5,--- ,I,}. Throughout
the algorithm, S denotes the secret.

Part I: Construction of the secret set {I;,I>, -+, [,}.

[1] Let the threshold sequence my,ma,- - ,m, be positive integers > 1
such that ged(m;,m;) =1 for i # j and

MiMma -« Mg > MpMp—1 My k2. (3.114)

[2] Determine the secret S in such a way that

max(k — 1) < S < min(k) (3.115)
where)
min(k) = mymsy - - - my,
e (3.116)
maX(k - 1) = MpMp—1-" " Mp—k+2-

[3] Compute {Iy, I,--- ,I,} in the following way:

S =1 (mod m,),
S = I, (mod ms),

...... (3117)
S =1, (mod my)
[4] Compute M = myms -+ - M.
[5] Send I; and (m;, M) to each P;.
Part 1I: Recovering S from any k of these Iy, I5,--- , I,,: Suppose now parties

{P;,,Pi,, -+, P;, } want to combine their knowledge {I;,,I;,, -, I; } to

find out S. (Each P;;,j =1,2,--- ,n has the triple (I;;,m;;, M) at hand).

[1] Each P;;, j =1,2,--- ,k computes his own secret recovering key S,
as follows:

7

Mij = M/mij7
Ni; = Mi;l (mod my;), (3.118)
Si;

= I;, M;; N;;.

3.3 Cryptography and Information Security 401

[2] Combine all the S;; to get the secret S:

2 k
S=>"8; | mod [[my |- (3.119)
=1

=1

(By the Chinese Remainder Theorem, this computed S will be the re-
quired secret).

Example 3.3.15. Suppose we wish to construct a (k,n)-threshold scheme
with £ = 3 and n = 5. The scheme administrator of a security agency first
defines the following threshold sequence m;:

mp = 97,
mo = 98,
ms = 99,
ma = 101,
ms = 103,

and computes:
M = mimomsmyms = 9790200882
mln(k) = mimsimsg = 941094
max(k — 1) = mgms = 10403.

He then defines the secret S to be in the range
10403 < S = 671875 < 941094

and calculates each I; for each P;:

=1 (mod ml) — I1 =53
=1 (mOd mg) — [, =85
= I3 (mod m3) = I3 =61
n (mod m4) = [, =23

()

S Iy (mod my) = I5 = 6.

Finally he distributes each I; as well as m; and M to each P;, so that each
P; who shares the secret S has the triple (I;,m;, M).

Suppose now P;, P, and P; want to combine their knowledge {I, I2, I5}
to find out S. They first individually compute:

M, = M/m, = 100929906
My = M /my = 99900009
M5 = M /m3 = 98890918

and

(mod my) = N; =95
(mod my) => Ny =13
(mOd m3) = N3 =31.

R
M1
555

402 3. Applied Number Theory in Computing/Cryptography

Hence, they get

S = LL-My-Ny+1I-My-No+I3-Ms- N3 (mod my - my-ms)

53 - 100929906 - 95 + 85 - 99900009 - 13 + 61 - 98890918 - 31
(mod 97 - 98 - 99)

805574312593 (mod 941094)

671875.

Suppose, alternatively, P;, P, and Ps; wish to combine their knowledge
{I,,14,I5} to find out S. They do the similar computations as follows:

My, = M/m, = 100929906
My = M/m4 = 96932682
Ms = M /ms = 95050494

and
Ny = M ! (mod m;) = N, =95
Ny = M; " (mod my) = N, = 61
Ns = My ' (mod ms) = N5 = 100.
Therefore,
S = Il'Ml'N1+I4'M4'N4+I5'M5'N5 (modml-m4-m5)

53 - 100929906 - 95 + 23 - 96932682 - 61 + 6 - 95050494 - 100
(mod 97 - 101 - 103)

= 701208925956 (mod 1009091)

671875.

However, knowledge of less than 3 of these Iy, I, I3, I, I5 is insufficient to
find out S. For example, you cannot expect to find out S just by combining
I and Iy:

SI

I - My -Ny+ Iy - My - Ny (mod my - my)

53 - 100929906 - 95 + 23 - 96932682 - 61 (mod 97 - 101)
644178629556 (mod 9791)

5679.

Clearly, this is not the correct value of S. Of course, you can find out S by
any 3 or more of the Iy, I, I3, I4, I5.

Exercise 3.3.12. In the above context, find out S if Py, Ps, Py, Ps wish to
combine their knowledge {I1, I3, I4, I5 } to find out S.

Exercise 3.3.13. Suppose a security agency defines a (5,7)-threshold
scheme and sends each triple (I;,m;, M) defined as follows to each person
P; fori=1,2,---,7, who shares the secret S:

3.3 Cryptography and Information Security 403

(Il, ml) = (824, 1501)

(I, my) = (1242,1617)
(I3,m3) = (1602, 1931)
(I, m4) = (1417,5573)
(I5,ms) = (3090, 6191)
(I, mg) = (281, 7537)

(I;,m7) = (6261,9513)

M =1501-1617-1917 - 3533 - 9657 - 10361 - 53113
= 11594148137520792605086941

Now suppose parties Py, P3, Ps, Ps, P wish to combine their knowledge
{I,I5,I5,16,I;} to find out S. What is the S? Suppose also parties
Py, P, Py, Ps, Ps wish to combine their knowledge {I, I3, I4, I5,Is} to find
out S. What is the S then? (The two S’s should be the same.)

3.3.13 Internet/Web Security and Electronic Commerce

It is easy to run a secure computer system. You merely have to disconnect
all dial-up connections and permit only direct-wired terminals, put the
machine and its terminals in a shielded room, and post a guard at the

door.
GRAMPP AND MORRIS

UNIX Operating System Security [91]

The security mentioned in the above quotation is unfortunately not what we
need, though it is easy to achieve; an isolated and disconnected computer
system is essentially a useless system in modern days. We would like such a
(local network) system which is fully connected to the Internet but still be as
secure as a disconnected system. How can we achieve such a goal? The first
method to secure the local system is to introduce a firewall (security gateway)
to protect a local system against intrusion from outside sources. An Internet
firewall serves the same purpose as firewalls in buildings: to protect a certain
area from the spread of fire and a potentially catastrophic explosion. It is
used to examine the Internet addresses on packets or ports requested on
incoming connections to decide what traffic is allowed into the local network.
The simplest form of a firewall is the packer filter, as shown in Figure 3.14.
It basically keeps a record of allowable sources and destination IP addresses
and deletes all packets which do not have these addresses. Unfortunately, this
firewalling technique suffers from the fact that IP addresses'® can be easily
forged. For example, a “hacker” might determine the list of good source
addresses and then add one of these addresses to any packets which are
addressed into the local network. Although some extra layers of security can

19" An Internet Protocol address (IP address), or just Internet address, is a unique
32-bit binary number assigned to a host and used for all communication with
the host.

404 3. Applied Number Theory in Computing/Cryptography

Allowable outgoing
|P addresses Locd
network
Firewall Loca
network
| |
Allowable Incoming :
|P addresses
Loca
network

Figure 3.14. Packet filter firewalls

be added into a firewall, it is generally still not powerful enough to protect a
local system against intrusion from outside unfriendly users in the Internet.
It is worthwhile pointing out that all networked systems have holes in them
by which someone else can slip into. For example, recently the U.S. Federal
Bureau of Investigation (FBI) estimated that $7.5 billion are lost annually to
electronic attack and the U.S. Department of Defence (DOD) says that in 96%
of the cases where the crackers got in, they went undetected. The best method
of protection for a local network system is to encrypt all the information
stored in the local system and to decrypt it whenever an authorized user
wants to use the information. This method has an an important application
in secure communications — to encrypt the data leaving the local network and
then to decrypt it on the remote site; only friendly sites will have the required
encryption/decryption key to receive or to send data, and only the routers
which connect to the Internet require to encrypt/decrypt. This technique is
known as the cryptographic tunnels (see Figure 3.15), which has the extra
advantage that data cannot be easily tapped-into (Buchanan [42]). A further

3.3 Cryptography and Information Security 405

Local Router with Local
Encryption network
network and
Decryption
Local
Local network
network
n
n
n |]
|] .
- Router with
Encryption
andl Local
Local Decryption network
network

Figure 3.15. Cryptographic tunnels

development of the cryptographic tunnels is the Virtual Private Networks
technologies [264], which use tunneling to create a private network so as to
keep communication private.

Cryptographic tunnels have important applications in secure communica-
tions and digital payments, or more generally, the electronic commerce over
the insecure Internet/World Wide Web. For example, if Bob wants to order
a book from Alice’s bookshop (see Figure 3.16), he uses the secure tunnel to
send Alice his credit card number; on receiving Bob’s credit card number,
Alice sends Bob the required book. It is worthwhile pointing out that a great
deal of effort has been put into commercial cryptographic-based Internet/Web
security in recent years. Generally speaking, there are two categories of com-
mercial cryptographic systems used for securing the Internet/Web communi-
cations. The first group are programs and protocols that are used for encryp-
tion of e-mail messages. These programs take a plaintext message, encrypt
it and either store the encrypted message on a local machine or transmit it

406 3. Applied Number Theory in Computing/Cryptography

Ciphertext for “My credit card number is ...”

Internet
Alice’s Bookshop
Bob (Encryption/Decryption
(Encryption/Decryption Key)

Key)

Ciphretext for “Your hook was mailed to you.”

Eavesdropper Eve
“What did they say???”

Figure 3.16. Electronic book ordering

to another user over the Internet. Some popular systems that fall into this
category include the following;:

(1) Pretty Good Privacy (PGP): PGP is a program created by Philip Zim-
mermann to encrypt e-mails using public-key cryptography. PGP was
electronically published as free software in 1991. It has now become the
worldwide de facto standard for e-mail encryption.

(2) Secure/Multipurpose Internet Mail Extensions (S/MIME): S/MIME is
a security enhancement to the MIME Internet e-mail format standard,
based on technology from RSA Data Security. Although both PGP and
S/MIME are on an IETF (Internet Engineering Task Force) standards
track, it appears likely that S/MIME will emerge as the industry standard
for commercial and organizational use, while PGP will remain the choice
for personal e-mail security for many users.

The second category of cryptographic systems are network protocols used for
providing confidentiality, authentication, integrity, and nonrepudiation in a
networked environment. These systems require real-time interplay between a
client and a server to work properly. Listed below are some systems falling
into this category:

(1) Secure Sockets Layer protocol (SSL): SSL is developed by Netscape
Communications, and supported by Netscape and Microsoft browsers. It
provides a secure channel between client and server which ensures privacy
of data, authentication of the session partners and message integrity.

(2) Private Communication Technology protocol (PCT): PCT, proposed by
Microsoft, is a slightly modified version of SSL. The Internet Engineering

3.3 Cryptography and Information Security 407

Task Force (IETF) is in the process of creating a Transport Secure Layer
(TSL) to merge the SSL and PCT.

(3) Secure HyperText Transport Protocol (S-HTTP): S-HTTP is developed
by Enterprise Integration Technologies (EIT). It uses a modified version
of HTTP clients and the server to allow negotiation of privacy, authen-
tication and integrity characteristics.

(4) Secure Transaction Technology Protocol (STT): STT is a standard devel-
oped jointly by Microsoft and Visa International to enable secure credit
card payment and authorisation over the web.

(5) Secure Electronic Payment Protocol (SEPP): SEPP is another electronic
payments scheme, sponsored by MasterCard and developed in associa-
tion with IBM, Netscape, CyberCash and GTE. Both STT and SEPP
have been superseded by SET (Secure Electronic Transactions), proposed
jointly by MasterCard and Visa.

Exercise 3.3.14. Try to order a copy of a book, e.g., the present book, from
Springer-Verlag by using your SSL-aware web browser to create an encrypted
connection to the Springer-Verlag web server:

https://www.springer.de

Now we are in a position to discuss a real-world commercial cryptographic
protocol, the SET protocol for secure credit card payment over the insecure
Internet. It is a simplified version of the SET, based on a description given
in [87].

Algorithm 3.3.10 (SET protocol). This algorithm describes a crypto-
graphic protocol for credit card payment over the Internet. Suppose that Alice
wants to purchase a book from Bob (an Internet bookshop) using the credit
card issued by Lisa (a bank), but Alice does not want Bob to see her credit card
number, however she wants Bob to send her the book and Lisa to send Bob
the payment. And of course, Alice also wants that the communications between
Bob, Lisa and herself is kept confidential even if someone is eavesdropping over
the Internet.

[1] Alice first prepares two documents: a purchase order O stating she wants
to order a book from Bob, and a payment slip P, providing Lisa the card
number to be used in the transaction, and the amount to be charged. Then
she computes the digests:

o= H(0) } (3.120)

p=H(P)
and produces a digital signature S for the digest of the concatenation of o

and p:
S=Da(H(ol||p)) = Da(H(H(O) || H(P))) (3.121)

408 3. Applied Number Theory in Computing/Cryptography

where D 4 is the function used by Alice to sign, based on her private key.
Alice encrypts the concatenation of o, P and S with Lisa’s public key, which
yields the ciphertext:

CL = E'L(O || P || S) (3.122)

She also encrypts with Bob's public key the concatenation of O, p and S
and gets the ciphertext:

Ce=Ep(OllpllS). (3.123)

She then sends Cf, and Cg to Bob.

[2] Bob retrieves O, p and S by decrypting C's with his private key. He verifies
the authenticity of the purchase order O with Alice’s public key by checking
that

EA(S)=H(H(O || p)) (3.124)

and forwards Cp, to Lisa.

[3] Lisa retrieves o, P and S by decrypting C, with private key. She verifies the
authenticity of the payment slip P with Alice's public key by checking that

Ex(S)=H(o || H(P)) (3.125)

and verifies that P indicates a payment to Bob. She then creates an au-
thorization message M that consists of a transaction number, Alice’s name,
and the amount she agreed to pay. Lisa computes the signature T of M,
encrypts the pair (M, T) with Bob's public key to get the ciphertext:

Cv = Eg(M || T) (3.126)

and sends it to Bob.

[4] Bob retrieves M and T by decrypting Cys and verifies the authenticity of
the authorization message M with Lisa's public key, by checking that

E(T) = M. (3.127)

He verifies that the name in M is Alice’s, and that the amount is the cor-
rect price of the book. He fulfills the order by sending the book to Alice
and requests the payment from Lisa by sending her the transaction number
encrypted with Lisa's public key.

[5] Lisa pays Bob and charges Alice’s credit card account.

3.3 Cryptography and Information Security 409

3.3.14 Steganography

Cryptography means “secret writing”. A closely related area to cryptography
is steganography, which literally means covered writing as derived from Greek
and deals with the hiding of messages so that the potential monitors do not
even know that a message is being sent. It is different from cryptography
where they know that a secret message is being sent. Figure 3.17 shows a
schematic diagram of a typical steganography system. Generally, the sender

Public and Insecure Channel Stegoanalyst

Stego-key Stego-key

Message /L/ Message
Concealing Extracting

Stego-Message

Embedded-Message Embedded-Message
(secret) (secret)

Cover-message
Cover-message (non-secret)
(non-secret)

Figure 3.17. A steganographic system

performs the following operations:

(1) write a non-secret cover-message,

(2) produce a stego-message by concealing a secret embedded message on
the cover-message by using a stego-key,

(3) send the stego-message over the insecure channel to the receiver.

At the other end, on receiving the stego-message, the intended receiver ex-
tracts the secret embedded message from the stego-message by using a pre-
agreed stego-key (often the same key as used in the message concealing).
Historical tricks include invisible inks, tiny pin punctures on selected char-
acters, minute differences between handwritten characters, etc. For example,
Kahn tells of a classical Chinese practice of embedding a code ideogram at
a prearranged place in a dispatch (Kahn [117]). More recently, people have
hidden secret messages in graphic images by replacing the least significant
bits of the image with a secret message (Schneier [218]).

410 3. Applied Number Theory in Computing/Cryptography

Note that the procedures of message concealing and message extracting
in steganography are more or less the same as the message encryption and
message decryption in cryptography. It is this reason that steganography is
often used together with cryptography. For example, an encrypted message
may be written using invisible ink. Note also that a steganographic system
can either be secret or public. In a public-key steganographic system, different
keys are used for message concealing and message extracting. Readers inter-
ested in steganography are suggested to consult the workshop proceedings on
Information Hiding (Anderson [9] and Aucsmith [13]).

3.3.15 Quantum Cryptography

In Chapter 2, we introduced some quantum algorithms for factoring large
integers and computing discrete logarithms. It is evident that if a quantum
computer is available, then all the public-key cryptographic systems based on
the difficulty of integer factorization and discrete logarithms will be insecure.
However, the cryptographic systems based on quantum mechanics will still
be secure even if a quantum computer is available. To make this book as
complete as possible, we shall introduce in this subsection some basic ideas
of quantum cryptography. More specifically, we shall introduce a quantum
analog of the Diffie-Hellman key exchange/distribution system, proposed by
Bennett and Brassard in 1984.
First let us define four polarizations as follows:

{0°, 45°, 90°, 135°} ¥ 5 A 1, <UL (3.128)

The quantum system consists of a transmitter, a receiver, and a quantum
channel through which polarized photons can be sent [25]. By the law of
quantum mechanics, the receiver can either distinguish between the rectilin-
ear polarizations {—, 1}, or reconfigure to discriminate between the diagonal
polarizations {7, N}, but in any case, he cannot distinguish both types.
The system works in the following way:

[1] Alice uses the transmitter to send Bob a sequence of photons, each of
them should be in one of the four polarizations {—, *, 1, \}. For
instance, Alice could choose, at random, the following photons

LA SN - - A N |
to be sent to Bob.

[2] Bob then uses the receiver to measure the polarizations. For each pho-
ton received from Alice, Bob chooses, at random, the following type of
measurements {+, x}:

3.4 Bibliographic Notes and Further Reading 411

+ + X X + X X X +

[3] Bob records the result of his measurements but keeps it secret:
N

[4] Bob publicly announces the type of measurements he made, and Alice
tells him which measurements were of correct type:

v vV v Vv

[5] Alice and Bob keep all cases in which Bob measured the correct type.
These cases are then translated into bits {0,1} and thereby become the
key:

T N - A 1

1 1 0 0 1

[6] Using this secret key formed by the quantum channel, Bob and Alice can
now encrypt and send their ordinary messages via the classic public-key
channel.

An eavesdropper is free to try to measure the photons in the quantum
channel, but, according to the law of quantum mechanics, he cannot in general
do this without disturbing them, and hence, the key formed by the quantum
channel is secure.

3.4 Bibliographic Notes and Further Reading

We interpret applied number theory in this book as the application of num-
ber theory to computing and information technology, and thus this chapter
is mainly concerned with these applications of number theory. Even with this
restriction, we argue that it is impossible to discuss all the computing related
applications of number theory in a single book. We have, in fact, only dis-
cussed the applications of number theory to the design of computer systems
and cryptosystems.

Our first application of number theory in computing is the design of com-
puter systems; these include residue number systems and residue computers,
complementary arithmetic and fast adders, error detections and corrections,
the construction of hash functions (particularly minimal perfect hash func-
tions), and the generation of random numbers/bits. Our aim was to show
the applicability of number theory in computer systems design rather than
the actual design of the computer (hardware or software) systems. There are

412 3. Applied Number Theory in Computing/Cryptography

plenty of books available on computer arithmetic (including residue number
systems and complementary arithmetic) and fast computer architectures, but
those by Koren [132], McClellan and Radar [149], Soderstrand et al. [243],
and Szabo and Tanaka [247] are highly recommended. A standard reference
that contains many applications of number theory in computer arithmetic,
random number generation and hash functions (and many more) is Knuth’s
three volumes of The Art of Computer Programming [122], [123], and [124].
For error detection and correction codes, see, for example, Gallian [77], Hill
[104], and Welsh [252].

Cryptography, particularly public-key cryptography, is an area that heav-
ily depends on ideas and methods from number theory; of course, number the-
ory is also useful in information systems security, including communication
network security. In this chapter, we have provided a mathematical foun-
dation for cryptography and information security. Those who desire a more
detailed exposition in the field are invited to consult Bauer [20], Koblitz
[128] and [129], and Pinch [184]; for elliptic curve public-key cryptography,
see Menezes [155]. Readers may also find the following books useful in cryp-
tography and computer security: Jackson [112], Kaufman et al. [118], Pfleeger
[182], Salomaa [215], Smith [242], Stinson [246] and Welsh [252]. The books
edited by Pomerance [190] and [44] contain a number of excellent survey
papers on cryptology and random number generation.

The series of conferences proceedings entitled Advances in Cryptology
published in Lecture Notes in Computer Science by Springer-Verlag is an
important source for new developments in cryptography and information se-
curity.

There is a special section on computer and network security in the Scien-
tific American, 279, 4(1998), 69-89; it contains the following articles:

[1] C. P. Meinel, “How Hackers Break in ... and How They Are Caught”, pp
70-77.

[2] “How Computer Security Works”,
[i] W. Cheswick and S. M. Bellovin, “Firewalls”, pp 78-79.
[ii] W. Ford, “Digital Certificates”, page 80.
iii] J. Gosling, “The Java Sandbox”, page 81.
[iii] g 8
[3] P. R. Zimmermann, “Cryptography for the Internet”, pp 82-87.
[4] R. L. Rivest, “The Case Against Regulating Encryption Technology”, pp
88-89.

An issue of the IEEE journal Computer, 31, 9(1998), also has a special report
on computer and network security, which contains the following six papers:

[1] P. W. Dowd and J. T. McHenry, “Network Security: It’s Time to Take
It Seriously”, pp 24-28.

[2] B. Schneier, “Cryptographic Design Vulnerabilities”, pp 29-33.

3.4 Bibliographic Notes and Further Reading 413

[3] A. D. Rubin and D. E. Geer Jr, “A Survey on Web Security, pp 34-42.
[4] R. Oppliger, “Security at the Internet Layer”, pp 43-47.

[5] W. A. Arbaugh, et al., “Security for Virtual Private Intranets”, pp 48-56.
[6]

6] T. D. Tarman, et al., “Algorithm-Agile Encryption in ATM Networks”,
pp 57-64.

Note that the paper by Rubin and Geer [213] also discussed some interesting
issues in mobile code security. All the above mentioned papers are easy to
read and hence suitable for beginners in the field.

As by-products to cryptography, we have also introduced some basic con-
cepts of steganography and quantum cryptography. There has been an in-
creasing number of references in these two fields in recent years; interested
readers are referred to, for example, Anderson [9], Aucsmith [13], Hughes
[106], Inamori [110] and Lo [146], and the references therein.

In addition to computing and cryptography, number theory has also been
successfully applied to many other areas such as physics, chemistry, acous-
tics, biology, engineering, dynamical systems, digital communications, digital
signal processing, graphics design, self-similarity, and even music. For more
information about these applications, readers are invited to consult Burr [44],
Schroeder [222] and Waldschmidt, Moussa, Luck and Itzykson [250].

2 Springer
http://www.springer.com/978-3-540-43072-8

Mumber Theory for Computing
Yan, 5.%.

2002, XX, 435 p., Hardcowver
ISBM: 97E8-32-540-43072-8

