
1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth 1 of 31

• Brief History of Forth Systems

• Fundamental Principles of Forth

• Basic Syntax

• The Stack(s)

• The Dictionary

• Basic Math

• Managing the Data Stack

• Comparisons

• Logical Expressions

• Conditional Execution

• Repeated Execution

• Variables, Constants, Arrays

• RCX Specific Words

• Online Resources

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Brief History 2 of 31

• Developed by Charles Moore in the 60’s

• First Forth system released in early 70’s

• Early application controlled radio telescopes

• Multitasking and realtime support on single CPU

• FORTH Inc formed with Elizabeth Rather

• Forth Interest Group formed and FIG Forth released in late 70’s

• Forth’s extensibility leads to fragmentation

• Too many “flavours” leads to push for standard

• Forth-83 standard adopted – each vendor still has peculiarities

• ANSI Committee formed to standardize again

• Draft available online

• pbForth is developed in late 1998

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Fundamental Principles 3 of 31

• Forth programming is unlike any other language

• Moore’s Principles

1. Keep it Simple

2. Do not Speculate

3. Do it Yourself

• General Programming Practice

1. Keep it Simple

2. Anticipate Needs

3. Work as a Group

• What makes Forth unique – according to Leo Brodie

1. Inplicit Calls

2. Implicit Data Passing

3. Direct Access to Memory

• Forth is an interpreter and a compiler

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Basic Syntax 4 of 31

• Every group of symbols separated by white space is either a word or number

• pbForth is case sensitive

• Input is totally free format

• Every line ends with a carriage return

• You are responsible for file management

• Work through Forth problems in front of your computer and RCX

• If you don’t have an RCX – use hForth

This is what you type

This is what Forth types back ok

hi

hForth H8/300 for RCX RAM Model V1.0.9 by Ralph Hempel, 1998
All noncommercial uses are granted.
Please send comments, bug reports and suggestions to:
 rhempel@bmts.com

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – The Stack(s) 5 of 31

• Forth has implicit parameter stack and return stacks

• Other languages intermingle their data and return addresses on one stack

• Think of the stack as a pile of cards – Last On First Off (or LIFO)

• Words may take parameters off the stack or put them on

• Numbers leave their value on the stack
1 2 3 . . .

3 2 1 ok

• The word “.” (dot) prints the top of the stack as a signed value

• The word DUP (dupe) makes a copy of the top of the stack
1 2 DUP . . .

2 2 1 ok

• The word DROP (drop) gets rid of the top of the stack
1 2 3 DROP . . .

2 1 xxyy . ? stack underflow

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – The Dictionary 6 of 31

• Forth has a “dictionary” of words it understands

• You can extend this dictionary from simple words to the compiler itself

• Words you (and Forth) know:

• Any number as well as . DUP DROP

• What is punctuation in other languages are words in Forth

• You extend the dictionary using : (colon) and ; (semicolon)
: PRINT_TWO . . ;

1 2 PRINT_TWO

2 1 ok

• That’s all there is to making new words for your dictionary
: name put_your_definition_here :

• You tell Forth you are starting a new definition with “:” then you give your new word a
name, then you define it in terms of words Forth already knows, and finally you tell
Forth that you are “;” done.

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Basic Math 1 7 of 31

• Forth uses “Reverse Polish Notation” or “postfix” operators – parameters, then operator
1 2 +

3 ok

• Forth has 16 bit fixed point math (signed and unsigned) – and some 32 bit math

• You can add floating point – but why bother?

• The basic 16 bit operators are:

+ (n1 n2 –- sum) (plus)

- (n1 n2 –- diff) (minus)

* (n1 n2 –- prod) (star)

/ (n1 n2 –- quot) (slash)

• There are some extras that come in handy

MOD (n1 n2 –- rem) (mod)

/MOD (n1 n2 –- rem quot) (slash-mod)

ABS (n1 –- absval) (abs)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Basic Math 2 8 of 31

• Values can be printed in signed or unsigned form

. (n1 –-) (dot)

U. (n1–-) (u-dot)

• You can change the displayed base of numbers you enter and print using

HEX (–-) (hex)

DECIMAL (–-) (decimal)

• You enter double precision (32 bit) numbers by following them with a decimal point

• Each single precision number takes up 1 cell on the stack

• Each double precision number takes up 2 cells on the stack

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Managing the Stack 9 of 31

• You must make sure your parameters are in the right order
foo (n1 n2 n3 – r1 r2 r3)

• n3 is the top of the stack before foo is called, r3 is the top of the stack after it returns

• Try and keep the variables you need on the stack, and use variables sparingly

• Here are some stack management words

DUP (n1 –- n1 n1) (dupe)

DROP (n1 n2 –- n1) (drop)

SWAP (n1 n2 –- n2 n1) (swap)

OVER (n1 n2 –- n1 n2 n1) (over)

ROT (n1 n2 n3–- n2 n3 n1) (rote)

2DUP (n1 n2 –- n1 n2 n1 n2) (two- dupe)

2DROP (n1 n2 –-) (two-drop)

2SWAP (n1 n2 n3 n4 –- n3 n4 n1 n2) (two-swap)

2OVER (n1 n2 n3 n4 –- n1 n2 n3 n4 n1 n2) (two-over)

DEPTH (… –- … n1) (depth)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Comparisons 1 10 of 31

• FALSE is defines as zero, TRUE is non-zero

• Conditional expressions use postfix notation too
1 2 > U.

0 ok

2 1 > U.

65535 ok

• To make things clearer, imagine putting the operator between the parameters

• When Forth returns a TRUE value, all of the bits are set

• Here are the signed comparison words

= (n1 n2 –- f) (equal)

< (n1 n2 –- f) (less-than)

> (n1 n2 –- f) (greater-than)

0= (n1 –- f) (zero-equal)

0< (n1 –- f) (zero-less)

• There is no 0> so make your own or use 0< 0=

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Comparisons 2 11 of 31

• Here are the unsigned comparison words

U< (n1 n2 –- f) (u-less-than)

U> (n1 n2 –- f) (u-greater-than)

0= (n1 –- f) (zero-equal)

0< (n1 –- f) (zero-less)

• Finally, here are some non-logical comparisons

MIN (n1 n2 –- minval) (min)

MAX (n1 n2 –- maxval) (max)

• And a stack manipulation that uses a conditional

?DUP (n1 –- n1 | n1 n1) (question-dupe)

• ?DUP only copies the top item if it’s non-zero

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Logical Expressions 2 12 of 31

• Here are the logical operators you can use in Forth

AND (u1 u2 –- andval) (and)

OR (u1 u2 –- orval) (or)

XOR (u1 u2 –- xorval) (xor)

INVERT (u1 u2 –- invert) (invert)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Conditional Execution 13 of 31

• Just like other languages, Forth allows you to do things based on conditions

• You can only use conditional execution inside a definition
: MY_MINa (n1 n2 –- minval)

 > IF SWAP DROP ELSE DROP THEN ;

• Or you could save a step and write
: MY_MINb (n1 n2 –- minval)

 > IF SWAP THEN DROP ;

• The basic form is

: … flag IF do_if_true ELSE do_if_false THEN … ;

• Remember, the IF word uses up the value on the top of the stack

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Repeated Execution 1 14 of 31

• Just like other languages, Forth allows you to repeat things based on

• You can only use repeated execution (loops) inside a definition

: .S (… –- …)

 DEPTH 0 DO I PICK . LOOP ;

• The general form of a counted do loop is

: … limit index DO do_stuff_here LOOP … ;

• The loop continues to run as long as limit is less than index

• To get the index of the current loop you use I

• Here's a new stack manipulation word

PICK (… n1 –- n1 | n1 ni) (pick)

• The PICK word grabs the indexed item off the stack.

• 0 PICK is the same as DUP

• 1 PICK is the same as OVER

• There is a bug in the previous code ... can you find it?

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Repeated Execution 2 15 of 31

• What happens when limit is equal to index ?

• Here's how to fix the problem

: .S (… -– …)

 DEPTH ?DUP IF 0 DO I PICK . LOOP THEN ;

• For incrementing a loop index by a value other than 1, use +LOOP
: BY5 (n –-)

 ?DUP IF 0 DO I . 5 +LOOP THEN ;

24 BY5 0 5 10 15 20 ok

• To get out of a loop early, just LEAVE
: BY5to10 (n –-)

 ?DUP IF 0 DO I DUP 10 > LEAVE . 5 +LOOP THEN ;

24 BY5to10 0 5 10 ok

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Repeated Execution 3 16 of 31

• You can make a traditional do loop like this

: … BEGIN do_loop_stuff flag UNTIL … ;

• The BEGIN UNTIL loop executes at least once, and runs as long as the flag is FALSE.
In other words, it runs until the flag is TRUE

• You can also make a loop only execute under certain conditions - a while loop

: … BEGIN do_check flag WHILE do_loop_stuff REPEAT … ;

• The optional code after BEGIN is always executed, the code between WHILE and
UNTIL executes only if the flag is TRUE. The REPEAT takes us back to the BEGIN

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Variables 17 of 31

• Forth does support variables, constants, and arrays, just like other languages

• Here’s how you make a variable that can store a single-celled value
VARIABLE FOO

• When you execute the FOO word later, the address of the cell in memory is returned

• Here are the words that let us read and write arbitrary addresses in memory:

@ (… addr –- n1) (fetch)

! (… n1 addr –-) (store)

• This is pretty easy stuff – but watch out! Storing to invalid addresses will probably crash
your system!

• Here’s how you fetch and store values out of FOO
46 FOO !

ok

FOO @ .

46 ok

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Constants 18 of 31

• Here’s how you make a coonstant that is a single-celled value
2362 CONSTANT BAR

• When you execute the BAR word later, the value of the cell in memory is returned

• There is no (easy) way to change the value of a constant

• Here’s how you use constants
BAR .

2362 ok

• What VARIABLE and CONSTANT do is add words to the dictionary and allocate space
for the values that they represent.

• VARIABLE and CONSTANT are defining words since they alter the dictionary.

• The other defining words we have seen so far are : and ;

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Arrays 19 of 31

• A new defining word is introduced at this point CREATE.

• This word makes a new name in the dictionary. When you execute this word, the
address returned is where VARIABLE would store its value.

• CREATE does not allocate space for you – you have complete control.
CREATE FOOARRAY 32 CELLS ALLOT

ok

• We have just created a 32 cell array, so here are some words we can define to get and
set values in the array…I’ve omitted the ok from pbForth

: ARRAY@ (addr n2 –- an) CELLS + @ ;

: ARRAY! (n1 addr n2 --) CELLS + ! ;

34 FOOARRAY 12 ARRAY!

12 ARRAY@ U.

34 ok

• There are two words for reading and writing at the byte level as well

C@ (… addr –- c1) (c-fetch)

C! (… c1 addr –-) (c-store)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – RCX Specific Words 20 of 31

• pbForth is distinguished from other Forths by having a few words in its dictionary which
are only useful on RCX systems.

• The words use the fully tested software that is in the ROM of the RCX.

• The calling conventions for the words closely mimic those of the ROM.

• The following groups of words will be discussed…

1. RCX and Power Control

2. Display Control

3. Motor Control

4. Button Control

5. Sound Control

6. Sensor Control

7. Timer Control

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – RCX and Power Control Words 21 of 31

• Before using the other words to control the RCX, it must be initialized.

• The ROM routines handle sampling the A/D, motor driving, button sensing etc

• Interrupts and data areas must be ininitialized

• Use the following words to set up the RCX system
RCX_INIT (--)

RCX_SHUTDOWN (--)

• The power can be turned off and on using the following words
POWER_INIT (--)

RCX_POWER (-- addr)

POWER_GET (addr code --)

POWER_OFF (--)

• The RCX_POWER word returns the address of the variable that hold the result of
POWER_GET

• The code parameter (hex) values for POWER_GET can be:
4000 power key status – 0 if pressed

4001 battery voltage – multiply by 43998 then divide by 1560

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Display Control Words 22 of 31

• The display control words can be used at any time.
LCD_SHOW (segment --)

LCD_HIDE (segment --)

LCD_NUMBER (comma number int --)

LCD_CLEAR (--)

LCD_REFRESH (--)

• The DISPLAY_REFRESH word must be called to actually change the display

• Here are the legal (hex) values for the segment parameter
3006 standing figure

3007 walking figure

3008 sensor 0 view selected

3009 sensor 0 active

300a sensor 1 view selected

300b sensor 1 active

300c sensor 2 view selected

300d sensor 2 active

300e motor 0 view selected

300f motor 0 backward arrow

3010 motor 0 forward arrow

3011 motor 1 view selected

3012 motor 1 backward arrow

3013 motor 1 forward arrow

3014 motor 2 view selected

3015 motor 2 backward arrow

3016 motor 2 forward arrow

3018 datalog indicator, multiple calls add
4 quarters clockwise

3019 download in progress, multiple calls
adds up to 5 dots to right

301a upload in progress, multiple calls
removes up to 5 dots from left

301b battery low

301c short range indicator

301d long range indicator

3020 all segments

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Display Control Words 23 of 31

• The point codes for the LCD_NUMBER word are a bit confusing

• The comma parameter can take the following (hex) values
3002 no decimal point

3003 000.0 format

3004 00.00 format

3005 0.000 format

• The int parameter can take the following (hex) values
3001 Set main number on display to signed value, with no leading zeros

If value > 9999, displayed value is 9999

 If value < -9999, displayed value is -9999

3017 Set lcd program number

 Set program number on display to value, use pointcode=0

If value < 0, no value is displayed

 If value > 0, no value is displayed

 Pointcode is ignored, no real need to set to zero

301f Set lcd main number unsigned

 Set main number on display to unsigned value, with leading zeros

 Value is unsigned, so it is never less than 0

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Motor Control Words 24 of 31

• Motor control is very simple, there is only one word to control them

MOTOR_SET (power dir idx--)

• The power parameter values can range from 0 (off) to 7 (full power).

• The dir parameter values can be:
1 forward

2 reverse

3 brake

4 float

• The idx parameter is the motor number
0 MOTOR A

1 MOTOR B

2 MOTOR_C

• Typical usage is:
7 1 0 MOTOR_SET (turns motor on forward)

7 3 0 MOTOR_SET (brakes hard)

7 2 0 MOTOR_SET (turns motor on reverse)

7 4 0 MOTOR_SET (motor coasts to a stop)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Button Control Words 25 of 31

• Before using the button system, it must be initialized

• Here are the button control words
BUTTON_INIT (--)

RCX_BUTTON (-- addr)

BUTTON_GET (addr --)

• The RCX_BUTTON word returns the address of the variable that hold the result of
BUTTON_GET

• Typical use of the button system is as follows:
RCX_BUTTON DUP BUTTON_GET @ U.

• The (hex) values left in the RCX_BUTTON variable are as follows:
1 RUN button pressed

2 PRGM button pressed

3 VIEW button pressed

• Remember to debounce the button readings to be sure that they stable – this goes for
the RCX_POWER function too.

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Sound Control Words 26 of 31

• The sound system for pbForth allows the standard tones to be played

• The tones can queued so you don’t have to wait until the current one is done

• The sound control words are:
RCX_SOUND (-- addr)

SOUND_PLAY (sound code --)

SOUND_GET (addr --)

• The RCX_SOUND word returns the address of the variable that hold the result of
SOUND_GET

• The sound parameter can have the following values:
0 Blip

1 Beep Beep

2 Upward Tones

3 Downward Tones

4 Low Buzz

5 Fast Upward Tones

• The code parameter is one of the following (hex) values:
4003 Sound is not queued

4004 Sound is queued

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Sensor Control Words 27 of 31

• The sensor system must be initialized before use – and each sesnor must be initialized
too

• Here are the words for the basic sensor control
SENSOR_INIT (--)

SENSOR_PASSIVE (idx --)

SENSOR_ACTIVE (idx --)

SENSOR_TYPE (type idx --)

SENSOR_MODE (mode idx --)

• The idx parameter is a bit confusing because it is 0 based
0 Sensor 1

1 Sensor 2

2 Sensor 3

• You need to tell the RCX if a sensor is passive or active. Touch and heat sensors are
passive. Light and angle sesnors are active

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Sensor Control Words 28 of 31

• The type parameter for SENSOR_TYPE can take on the following (hex) values
1 Touch

2 Temperature

3 Light

4 Angle (Rotation)

• The mode parameter for SENSOR_MODE tells the RCX how to process the data from the
sensor and has the following (hex) values. Not all modes will not make sense with all
types.

00 Raw

20 Boolean

40 Edge

60 Pulse

80 Percent

A0 Degrees Celsius

C0 Degrees Fahrenheit

E0 Angle

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Sensor Control Words 29 of 31

• Once the sensor has been initialized it must be read on a regular basis – depending on
what you are measuring

SENSOR_READ (idx --)

• The current value of the sesnor can be read in a number of forms, not all will make
sense

SENSOR_RAW (idx –- raw)

SENSOR_VALUE (idx –- val)

SENSOR_BOOL (idx -- bool)

• Sometimes, you will want to wipe out all of a sensors values, but leave the mode and
type as they were.

SENSOR_CLEAR (idx --)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Timer Control Words 30 of 31

• The RCX has two kinds of timers that pbForth can access

• The 4 low resolution timers are incremented every 100 msec and count up continuously
and roll over at 65535.

• Here are the low resolution timer words, the idx parameter specifies the timer number.
Be very careful to keep within the proper range!

TIMER_SET (value idx --)

TIMER_GET (idx –- value)

• The 10 high resolution timers are decremented every 10 msec and count down to zero
and then stop

• Here are the high resolution timer words, the idx parameter specifies the timer
number. Be very careful to keep within the proper range!

timer_SET (value idx --)

timer_GET (idx –- value)

1999 Ralph Hempel – Visit us on the Web at <http://www.hempeldesigngroup.com>

Introduction to pbForth – Online Resources 31 of 31

• The RCX has a lots of on-line resources supported by knowledgable and friendly users

• Here are a few of them:

www.lugnet.com General starting point in your quest for
knowledge about LEGO, Mindtorms, or
the RCX

www.forth.org Good source of on-line documentation for
Forth in general

www.hempeldesigngroup.com The official home of pbForth with links to
other RCX sites

