
Lecture 2: Some Basic Vocabulary of Computer and

Network Security and a Brief Review of Classical

Encryption Techniques

Lecture Notes on “Computer and Network Security”

by Avi Kak (kak@purdue.edu)

April 30, 2017

10:40am

c©2017 Avinash Kak, Purdue University

Goals:
• To introduce the rudiments of the vocabulary of computer and network
security and that of encryption/decryption.

• To trace the history of some early approaches to cryptography and to
show through this history a common failing of humans to get carried

away by the technological and scientific hubris of the moment.

• Simple Python and Perl scripts that give you pretty good se-

curity for confidential communications. Only good for fun,
though.

CONTENTS

Section Title Page

2.1 Some Basic Vocabulary to Get Us Started 3

2.2 Building Blocks of Classical Encryption Techniques 14

2.3 Caesar Cipher 15

2.4 The Swahili Angle ... 17

2.5 Monoalphabetic Ciphers 19

2.5.1 A Very Large Key Space But 21

2.6 The All-Fearsome Statistical Attack 22

2.6.1 Comparing the Statistics for Digrams and Trigrams 24

2.7 Multiple-Character Encryption to Mask Plaintext Structure: 26

The Playfair Cipher

2.7.1 Constructing the Matrix for Pairwise Substitutions 27

in the Playfair Cipher

2.7.2 Substitution Rules for Pairs of Characters in the 28

Playfair Cipher

2.7.3 How Secure Is the Playfair Cipher? 30

2.8 Another Multi-Letter Cipher: The Hill Cipher 33

2.8.1 How Secure Is the Hill Cipher? 35

2.9 Polyalphabetic Ciphers: The Vigenere Cipher 36

2.9.1 How Secure Is the Vigenere Cipher? 37

2.10 Transposition Techniques 39

2.11 Establishing Secure Communications for Fun (But Not for 43

Profit)

2.12 Homework Problems 55

2

Computer and Network Security by Avi Kak Lecture 2

2.1: BASIC VOCABULARY TO GET US
STARTED

I’ll start this section with some basic vocabulary of encryption and

decryption, since that’s the primary focus of the beginning lectures in

this series. Subsequently, I’ll also review some of the basic vocabulary

of computer and network security more from a systems perspective.

For the systems oriented vocabulary, I’ll present the definitions in

the recently released “Android Security: 2016 Year in Review.”

So let’s start with encryption and decryption:

plaintext: This is what you want to encrypt

ciphertext: The encrypted output

enciphering or encryption: The process by which plaintext is converted

into ciphertext

encryption algorithm: The sequence of data processing steps that go into

transforming plaintext into ciphertext. Various parameters used by an
encryption algorithm are derived from a secret key. In cryptography for

commercial and other civilian applications, the encryption and decryp-
tion algorithms are placed in the public domain. [Just think about the consequences

3

Computer and Network Security by Avi Kak Lecture 2

of keeping the algorithms secret. First and foremost, a secret algorithm is less likely to be subject to the same

level of testing and scrutiny that a public algorithm is. And, assuming that a secret algorithm is used for all

communications within an organization, what if a disgruntled employee posted the algorithm anonymously on

WikiLeaks?]

secret key: A secret key is used to set some or all of the various parameters

used by the encryption algorithm. The important thing to note
is that, in classical cryptography, the same secret key is used

for encryption and decryption. It is for this reason that classical
cryptography is also referred to as symmetric key cryptography. On
the other hand, in the more modern cryptographic algorithms,

the encryption and decryption keys are not only different, but
also one of them is placed in the public domain. Such algorithms

are commonly referred to as asymmetric key cryptography, public key
cryptography, etc.

deciphering or decryption: Recovering plaintext from ciphertext

decryption algorithm: The sequence of data processing steps that go into
transforming ciphertext back into plaintext. In classical cryptography,

the various parameters used by a decryption algorithm are derived from
the same secret key that was used in the encryption algorithm.

cryptography: The many schemes available today for encryption and de-
cryption

cryptographic system: Any single scheme for encryption and decryption

4

Computer and Network Security by Avi Kak Lecture 2

cipher: A cipher means the same thing as a “cryptographic system”

block cipher: A block cipher processes a block of input data at a time and
produces a ciphertext block of the same size.

stream cipher: A stream cipher encrypts data on the fly, usually one byte

at at time.

cryptanalysis: Means “breaking the code”. Cryptanalysis relies on a knowl-

edge of the encryption algorithm (that for civilian applications should be
in the public domain) and some knowledge of the possible structure of the

plaintext (such as the structure of a typical inter-bank financial transac-
tion) for a partial or full reconstruction of the plaintext from ciphertext.

Additionally, the goal is to also infer the key for decryption of future
messages.

The precise methods used for cryptanalysis depend on whether the “at-
tacker” has just a piece of ciphertext, or pairs of plaintext and ciphertext,

how much structure is possessed by the plaintext, and how much of that
structure is known to the attacker.

All forms of cryptanalysis for classical encryption exploit the fact that
some aspect of the structure of plaintext may survive in the ciphertext.

key space: The total number of all possible keys that can be used in a
cryptographic system. For example, DES uses a 56-bit key. So the key

space is of size 256, which is approximately the same as 7.2× 1016.

brute-force attack: When encryption and decryption algorithms are pub-
licly available, as they generally are, a brute-force attack means trying

5

Computer and Network Security by Avi Kak Lecture 2

every possible key on a piece of ciphertext until an intelligible translation
into plaintext is obtained.

codebook attack: In general, a codebook is a mapping from the plaintext

symbols to the ciphertext symbols. In old times, the two endpoints of a
military communication link would have the same codebook that would

be composed of sheets, with a different sheet to be used for each day.
In a codebook attack, the attacker tries to acquire as many as possible

of the mappings between the plaintext symbols and the corresponding
ciphertext symbols. The data thus accumulated can give the attacker a
headstart in breaking the code. [In modern times, you can think of a codebook as the mapping

between the plaintext bit blocks and the ciphertext bit blocks, with a ciphertext bit block being related to

the corresponding plaintext bit block through an encryption key. If the size of the bit blocks is small enough,

an attacker may be able to break the code (meaning, find the encryption key) from the recorded mappings

between the plaintext bit blocks and the ciphertext bit blocks. As a trivial example, consider an 8-bit block

cipher that scans the plaintext in blocks of 8 bits. If we can construct a codebook with mappings for all 256

different possible bit blocks, we have broken the cipher.]

algebraic attack: You express the plaintext-to-ciphertext relationship as a
system of equations. Given a set of (plaintext, ciphertext) pairs, you try

to solve the equations for the encryption key. As you will see, encryption
algorithms involve nonlinearities. In algebraic attacks, one attempts to

introduce additional variables into the system of equations and make
nonlinear equations look linear.

time-memory tradeoff in attacking ciphers: The brute-force and the code-
book attacks represent two opposite cases in terms of time versus memory

needs of the algorithms. Pure brute-force attacks have very little memory
needs, but can require inordinately long times to scan through all possible

keys. On the other hand, codebook attacks can in principle yield results
instantaneously, but their memory needs can be humongously large. Just

imagine a codebook for a 64-bit block cipher; it may need as many as

6

Computer and Network Security by Avi Kak Lecture 2

264 rows in it. In some cases, by trading off memory for time, it is pos-
sible to devise more effective attacks that are sometimes referred to as

time-memory tradeoff attacks. [As a specific example of time-memory tradeoff, we may be

able to reduce the time taken by a brute-force attack if we use memory to store intermediate results obtained

from the current computational steps (assuming they can help us avoid unnecessary search later during the

computations). You will see examples of such tradeoffs in Lecture 24 when we talk about password cracking

with rainbow tables.]

cryptology: Cryptography and cryptanalysis together constitute the area of

cryptology

That brings us to the vocabulary related to the systems side of com-

puter and network security. As I mentioned earlier, for this I am

going to present the definitions in the recently released “Android Se-

curity: 2016 Year in Review.” By the way, it is a well-written report

that in my mind has a high educational value. You can download

the report from:

https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf

Note that the definitions provided in the Google report are meant

specifically for the Android platform, and that too for what Google

considers to be “Potentially Harmful Applications (PHA)” for that

platform. Nonetheless, I believe that these definitions apply more

or less to all mobile platforms. While mobile platforms are not the

main focus of my lecture notes (I devote just one lecture to “mobile”

7

Computer and Network Security by Avi Kak Lecture 2

— Lecture 32), except for items like “call fraud”, “toll fraud”, etc.,

a majority of the items defined below have universal applicability in

computer and network security. So here we go:

backdoor: An application that allows the execution of unwanted, potentially
harmful remote-controlled operations on a device that would place the

app into one of the other malware categories if executed automatically.

In general, the backdoor is more a description of how potentially harmful

operation can happen on a device and is therefore not completely aligned
with PHA categories like billing fraud or commercial spyware apps.

commercial spyware: Any application that transmits sensitive information
off the device without user consent and does not display a persistent

notification that this is happening.

Commercial spyware apps transmit data to a party other than the PHA
provider. Legitimate forms of these apps can be used by parents to track
their children. However, these apps can be used to track a person (a

spouse, for example) without their knowledge or permission if a persistent
notification is not displayed while the data is being transmitted.

denial of service: An application that, without the knowledge of the user,

executes a denial-of-service attack or is a part of a distributed denial-of-
service attack against other systems and resources. This can happen by
sending a high volume of HTTP requests to produce excessive load on

remote servers.

hostile downloader: An application that is not in itself potentially harmful,
but downloads other potentially harmful apps. For example, a gaming

app that does not contain malicious code, but persistently displays a
misleading Security Update link that installs harmful apps.

8

Computer and Network Security by Avi Kak Lecture 2

mobile billing fraud: An application that charges the user in an intention-
ally misleading way. Mobile billing fraud is divided into SMS fraud, Call

fraud, and Toll fraud based on the type of fraud being committed.

sms fraud: An application that charges users to send premium SMS with-
out consent, or tries to disguise its SMS activities by hiding disclosure

agreements or SMS messages from the mobile operator notifying the user
of charges or confirming subscription.

Some apps, even though they technically disclose SMS sending behavior
introduce additional tricky behavior that accommodates SMS fraud. Ex-

amples of this include hiding any parts of disclosure agreement from the
user, making them unreadable, conditionally suppressing SMS messages

the mobile operator sends to inform user of charges or confirm subscrip-
tion.

call fraud: An application that charges users by making calls to premium
numbers without user consent.

toll fraud: An application that tricks users to subscribe or purchase content

via their mobile phone bill.

Toll Fraud includes any type of billing except Premium SMS and pre-

mium calls. Examples of this include: Direct Carrier Billing, WAP
(Wireless Access Point), or Mobile Airtime Transfer.

WAP fraud is one of the most prevalent types of Toll fraud. WAP fraud
can include tricking users to click a button on a silently loaded transpar-

ent WebView. Upon performing the action, a recurring subscription is
initiated, and the confirmation SMS or email is often hijacked to prevent
users from noticing the financial transaction.

phishing: An application that pretends to come from a trustworthy source,

9

Computer and Network Security by Avi Kak Lecture 2

requests a users authentication credentials and/or billing information,
and sends the data to a third party. This category also applies to apps

that intercept the transmission of user credentials in transit. Common
targets of phishing include banking credentials, credit card numbers, or
online account credentials for social networks and games.

mobile unwanted software (MUwS): Any application that collections at

least one of the following without user consent:

• Information about installed applications

• Information about third-party accounts

• Names of files on the device

This includes collecting the actual list of installed applications as well as
partial information like information about currently active apps.

privilege escalation: An application that compromises the integrity of the

system by breaking the application sandbox, or changing or disabling
access to core security-related functions. Examples include:

• An app that violates the Android permissions model, or steals cre-
dentials (such as OAuth tokens) from other apps.

• An app that prevents its own removal by abusing device administrator
APIs.

• An app that disables SELinux.

Privilege escalation apps that root devices without user permission are

classified as rooting apps.

10

Computer and Network Security by Avi Kak Lecture 2

ransomware: An application that takes partial or extensive control of a
device or data on a device and demands payment to release control.

Some ransomware apps encrypt data on the device and demand payment
to decrypt data and/or leverage the device administrator features so that

the app cant be removed by the typical user. Examples include:

• Ransomware that locks a user out of their device and demands money
to restore user control.

• Ransomware that encrypts data on the phone and demands payment,

ostensibly to decrypt data again.

• Ransomware that leverages device policy manager features and can-

not be removed by the user.

rooting: A privilege escalation app that roots the device.

There is a difference between malicious rooting apps and non-malicious
rooting apps.

Non-malicious rooting apps let the user know in advance that they are
going to root the device and they do not execute other potentially harmful

actions that apply to other PHA categories.

Malicious rooting apps do not inform the user that they will root the
device, or they inform the user about the rooting in advance but also

execute other actions that apply to other PHA categories.

spam: An application that sends unsolicited commercial messages to the
users contact list or uses the device as an email spam relay.

spyware: An application that transmits sensitive information off the device.

Transmission of any of the following without disclosures or in a manner

that is unexpected to the user are sufficient to be considered spyware:

11

Computer and Network Security by Avi Kak Lecture 2

• contact list

• photos or other files not owned by the application

• content from user email

• call log

• SMS log

• web history or browser bookmarks of the default browser

• information from the /data/ directories of other applications.

Behaviors that can be considered as spying on the user can also be flagged

as spyware. For example: recording audio or recording calls made to the
phone, stealing application data, etc.

trojan: An application that appears to be benign, such as a game that claims

only to be a game, and performs undesirable actions against the user.
This classification is usually used in combination with other categories
of harmfulness. A trojan will have an innocuous app component and a

hidden harmful component. For example, a tic-tac-toe game that, in the
background and without the knowledge of the user, sends premium SMS

messages from the users device

To repeat, while the definitions shown above, taken verbatim from

the previously cited Google report on Android security, are specifi-

cally for case of the Android platform, several of them apply univer-

sally to all platforms. In any case, being open-source, the Android

platform figures prominently in the research literature dealing with

computer and network security. I will have more to say about this

platform in Lecture 32.

12

Computer and Network Security by Avi Kak Lecture 2

Before leaving this section, I’d like to draw the reader’s attention to

the following website:

http://map.norsecorp.com/

What you’ll at the website is an incredibly compelling visual presen-

tation of the attacks in progress in the internet throughout the world

on an on-going basis. These attacks are detected with the help of

honeypots that Norse, a computer security company, has installed

around the world. [As described in Section 22.6 of Lecture 22, a honeypot is a specially configured

machine — often a virtual machine these days — that presents a specific network profile to the rest of the internet

for the purpose of attracting malware. Consider an attacker who wants to exploit a particular vulnerability in the

HTTPD servers for the purpose of installing his malware. The attacker, not really caring where exactly he finds such

server hosts, chooses to scan large blocks of IP addresses more or less randomly. In order to capture the attacker’s

malware, a honeypot would act exactly like the HTTPD server the attacker is hoping to find. The honeypot would

download the malware but would not activate it.] Since the visual representation of

the attacks shown in the map is quite powerful, people wonder as to

what extent the map represents the total reality of internet attacks.

For the most part, what you see in the map are standard network

attacks on the different ports and with respect to a set of well-known

vulnerabilities. Nonetheless, it is a great map to look at — a great

motivator for learning the ins and outs of computer and network

security.

13

Computer and Network Security by Avi Kak Lecture 2

2.2: BUILDING BLOCKS OF CLASSICAL
ENCRYPTION TECHNIQUES

• Two building blocks of all classical encryption techniques are

substitution and transposition.

• Substitution means replacing an element of the plaintext with an

element of ciphertext.

• The same overall substitution rule may be applied to every el-

ement of the plaintext, or the substitution rule may vary from

position to position in the plaintext.

• Transposition means rearranging the order of appearance of the

elements of the plaintext.

• Transposition is also referred to as permutation.

• Transposition may be carried out after substitution, or the other

way around. In complex algorithms, there may be multiple rounds

of transposition and substitution.

14

Computer and Network Security by Avi Kak Lecture 2

2.3: CAESAR CIPHER

• This is the earliest known example of a substitution cipher.

• Each character of a message is replaced by a character three po-

sition down in the alphabet.

plaintext: are you ready

ciphertext: DUH BRX UHDGB

• If we represent each letter of the alphabet by an integer that

corresponds to its position in the alphabet, the formula for re-

placing each character p of the plaintext with a character c of the

ciphertext can be expressed as

c = E(3, p) = (p + 3) mod 26

where E() stands for encryption. If you are not already familiar

with modulo division, the mod operator returns the integer re-

mainder of the division when p+ 3 is divided by 26, the number

of letters in the English alphabet. We are obviously assuming

case-insensitive encoding with the Caesar cipher.

15

Computer and Network Security by Avi Kak Lecture 2

• A more general version of this cipher that allows for any degree

of shift would be expressed by

c = E(k, p) = (p + k) mod 26

• The formula for decryption would be

p = D(k, c) = (c− k) mod 26

• In these formulas, k would be the secret key. As mentioned ear-

lier, E() stands for encryption. By the same token, D() stands

for decryption.

16

Computer and Network Security by Avi Kak Lecture 2

2.4: THE SWAHILI ANGLE ...

• A simple substitution cipher obviously looks much too simple to

be able to provide any security, but that is the case only if you

have some idea regarding the nature of the plaintext.

• What if the “plaintext” could be considered to be a binary stream

of data and a substitution cipher replaced every consecutive 6

bits with one of 64 possible cipher characters? In fact, this is

referred to as Base64 encoding for sending email multimedia

attachments. [Did you know that all internet communications are character

based? What does that mean and why do you think that is the case? What if you

wanted to send a digital photo over the internet and one of the pixels in the photo

had its graylevel value as 10 (hex: 0A)? If you put such a photo file on the wire

without, say, Base64 encoding, why do you think that would cause problems? Imagine

what would happen if you sent such a photo file to a printer without encoding. Visit

http://www.asciitable.com to understand how the characters of the English alphabet

are generally encoded. Visit the Base64 page at Wikipedia to understand why you need

this type of encoding. A Base64 representation is created by carrying out a bit-level

scan of the data and encoding it six bits at a time into a set of printable characters. For

the most commonly used version of Base64, this 64-element set consists of the characters

A-Z, a-z, 0-9, ‘+’, and ‘/’.]

17

Computer and Network Security by Avi Kak Lecture 2

• If you did not know anything about the underlying plaintext and

it was encrypted by a Base64 sort of an algorithm, it might not

be as trivial a cryptographic system as it might seem. But, of

course, if the word ever got out that your plaintext was in Swahili,

you’d be hosed.

• Finally, here is more regarding the slogan “All internet commu-

nications are character based” in the red-and-blue note on the

previous page: As you will see in Lecture 16, the internet commu-

nications are governed by the TCP/IP protocol. That protocol

itself does not care whether you put on the wire a purely charac-

ter based file, an audio file, a video file, etc. The protocol would

work equally well with all sorts of files. So, strictly speaking, the

slogan is technically wrong. Nonetheless, the slogan is of great

practical importance because the software that is charged with

the task of making your data file available to the TCP/IP engine

in your computer could corrupt your data if it is not based on

just printable characters.

18

Computer and Network Security by Avi Kak Lecture 2

2.5: A SEEMINGLY VERY STRONG
MONOALPHABETIC CIPHER

• The Caesar cipher you just saw is an example of a monoalpha-

betic cipher. Basically, in a monoalphabetic cipher, you have

a substitution rule that gives you a replacement ciphertext letter

for each letter of the alphabet used in the plaintext message.

• Let’s now consider what one would think would be a very strong

monoalphabetic cipher. We will make our substitution letters a

random permutation of the 26 letters of the alphabet:

plaintext letters: a b c d e f

substitution letters: t h i j a b

• The encryption key now is the sequence of substitution letters. In

other words, the key in this case is the actual random permutation

of the alphabet used.

• Since there are 26! permutations of the alphabet, we end up with

an extremely large key space. The number 26! is much larger

19

Computer and Network Security by Avi Kak Lecture 2

than 4 × 1026. Since each permutation constitutes a key, that

means that the monoalphabetic cipher has a key space of size

larger than 4× 1026.

• Wouldn’t such a large key space make this cipher extremely dif-

ficult to break? Not really, as we explain next!

20

Computer and Network Security by Avi Kak Lecture 2

2.5.1: A Very Large Key Space But

• The very large key space of a monoalphabetic cipher means that

the total number of all possible keys that would need to be guessed

in a pure brute-force attack would be much too large for such an

attack to be feasible. This key space is 10 orders of magnitude

larger than the size of the key space for DES, the now somewhat

outdated (but still widely used in the form of 3DES, as described in Lecture 9) NIST standard

that is presented in Lecture 3. [When you increase the size of a number by a factor of

10, you are increasing the size by one order of magnitude. So when we say that the keyspace is 10 orders of

magnitude larger, that means that the keyspace is larger by a factor of 1010. Recall, as mentioned in Section

2.1, the keyspace of DES is 256 since the key size is 56 bits. And 256 ≈ 7.2 × 1016.]

• Obviously, this would rule out a brute-force attack. Even if each

key took only a nanosecond to try, it would still take zillions of

years to try out even half the keys.

• So this would seem to be the answer to our prayers for an un-

breakable code for symmetric encryption.

• But it is not! As to why? Read on.

21

Computer and Network Security by Avi Kak Lecture 2

2.6: THE ALL-FEARSOME STATISTICAL
ATTACK

• If you know the nature of plaintext, any substitution cipher, re-

gardless of the size of the key space, can be broken easily with a

statistical attack.

• When the plaintext is plain English, a simple form of statistical

attack consists measuring the frequency distribution for single

characters, for pairs of characters, for triples of characters, and

so on, and comparing those with similar statistics for English.

• Figure 1 shows the relative frequencies for the letters of the En-

glish alphabet in a sample of English text. Obviously, by com-

paring this distribution with a histogram for the letters occurring

in a piece of ciphertext, you may be able to establish the true

identities of the ciphertext letters.

22

Computer and Network Security by Avi Kak Lecture 2

Figure 1: Relative frequencies of occurrence for the letters

of the alphabet in a sample of English text. (This figure is from

Lecture 2 of “Computer and Network Security” by Avi Kak)

23

Computer and Network Security by Avi Kak Lecture 2

2.6.1: Comparing the Statistics for Digrams and

Trigrams

• Equally powerful statistical inferences can be made by comparing

the relative frequencies for pairs and triples of characters in the

ciphertext and the language believed to be used for the plaintext.

• Pairs of adjacent characters are referred to as digrams, and

triples of characters as trigrams.

• Shown in Table 1 are the digram frequencies. The table does not

include digrams whose relative frequencies are below 0.47. (A

complete table of frequencies for all possible digrams would have

676 entries in it.)

• If we have available to us the relative frequencies for all possi-

ble digrams, we can represent this table by the joint probability

p(x, y) where x denotes the first letter of a digram and y the

second letter. Such joint probabilities can be used to compare

the digram-based statistics of ciphertext and plaintext.

• The most frequently occurring trigrams ordered by decreasing

frequency are:

24

Computer and Network Security by Avi Kak Lecture 2

the and ent ion tio for nde

digram frequency digram frequency digram frequency digram frequency

th 3.15 to 1.11 sa 0.75 ma 0.56

he 2.51 nt 1.10 hi 0.72 ta 0.56

an 1.72 ed 1.07 le 0.72 ce 0.55

in 1.69 is 1.06 so 0.71 ic 0.55

er 1.54 ar 1.01 as 0.67 ll 0.55

re 1.48 ou 0.96 no 0.65 na 0.54

es 1.45 te 0.94 ne 0.64 ro 0.54

on 1.45 of 0.94 ec 0.64 ot 0.53

ea 1.31 it 0.88 io 0.63 tt 0.53

ti 1.28 ha 0.84 rt 0.63 ve 0.53

at 1.24 se 0.84 co 0.59 ns 0.51

st 1.21 et 0.80 be 0.58 ur 0.49

en 1.20 al 0.77 di 0.57 me 0.48

nd 1.18 ri 0.77 li 0.57 wh 0.48

or 1.13 ng 0.75 ra 0.57 ly 0.47

Table 1: Digram frequencies in English text (This table is from

Lecture 2 of “Computer and Network Security” by Avi Kak)

25

Computer and Network Security by Avi Kak Lecture 2

2.7: MULTIPLE-CHARACTER
ENCRYPTION TO MASK PLAINTEXT
STRUCTURE: THE PLAYFAIR CIPHER

• One character at a time substitution obviously leaves too much

of the plaintext structure in ciphertext.

• So how about destroying some of that structure by mapping mul-

tiple characters at a time to ciphertext characters?

• One of the best known approaches in classical encryption that car-

ries out multiple-character substitution is known as thePlayfair

cipher, which is described in the next subsection.

26

Computer and Network Security by Avi Kak Lecture 2

2.7.1: Constructing the Matrix for Pairwise

Substitutions in Playfair Cipher

• In Playfair cipher, you first choose an encryption key, making

sure that there are no duplicate characters in the key.

• You then enter the characters in the key in the cells of a 5 × 5

matrix in a left-to-right and top-to-down fashion starting with

the first cell at the top-left corner.

• You fill the rest of the cells of the matrix with the remaining char-

acters in the alphabet and do so in alphabetic order. The letters

I and J are assigned the same cell. In the following example, the

key is “smythework”:

S M Y T H

E W O R K

A B C D F

G I/J L N P

Q U V X Z

27

Computer and Network Security by Avi Kak Lecture 2

2.7.2: Substitution Rules for Pairs of Characters in

Playfair Cipher

• You scan the plaintext in pairs of consecutively occurring char-

acters. And, for any given pair of plaintext characters, you use

the following three rules to determine the corresponding pair of

ciphertext characters:

1. Two plaintext letters that fall in the same row of the 5 × 5

matrix are replaced by letters to the right of each in the row.

The “rightness” property is to be interpreted circularly in each

row, meaning that the first entry in each row is to the right of

the last entry. Therefore, the pair of letters “bf” in plaintext

will get replaced by “CA” in ciphertext.

2. Two plaintext letters that fall in the same column are replaced

by the letters just below them in the column. The “belowness”

property is to be considered circular, in the sense that the

topmost entry in a column is below the bottom-most entry.

Therefore, the pair “ol” of plaintext will get replaced by “CV”

in ciphertext.

3. Otherwise, for each plaintext letter in a pair, replace it with

the letter that is in the same row but in the column of the

other letter. Consider the pair “gf” of the plaintext. We have

28

Computer and Network Security by Avi Kak Lecture 2

‘g’ in the fourth row and the first column; and ‘f’ in the third

row and the fifth column. So we replace ‘g’ by the letter in

the same row as ‘g’ but in the column that contains ‘f’. This

given us ‘P’ as a replacement for ‘g’. And we replace ‘f’ by the

letter in the same row as ‘f’ but in the column that contains

‘g’. That gives us ‘A’ as replacement for ‘f’. Therefore, ‘gf’

gets replaced by ‘PA’.

• Before the substitution rules are applied, you must insert a chosen

“filler” letter (let’s say it is ‘x’) between any repeating letters in

the plaintext. So a plaintext word such as “hurray” becomes

“hurxray”

29

Computer and Network Security by Avi Kak Lecture 2

2.7.3: How Secure is the Playfair Cipher?

• Playfair was thought to be unbreakable for many decades.

• It was used as the encryption system by the British Army in

World War 1. It was also used by the U.S. Army and other

Allied forces in World War 2.

• But, as it turned out, Playfair was extremely easy to break.

• As expected, the cipher does alter the relative frequencies as-

sociated with the individual letters and with digrams and with

trigrams, but not sufficiently.

• Figure 2 shows the single-letter relative frequencies in descending

order (and normalized to the relative frequency of the letter ’e’)

for some different ciphers. There is still considerable information

left in the distribution for good guesses.

• The cryptanalysis of the Playfair cipher is also aided by the fact

that a digram and its reverse will encrypt in a similar fashion.

That is, if AB encrypts to XY, then BA will encrypt to YX.

So by looking for words that begin and end in reversed digrams,

30

Computer and Network Security by Avi Kak Lecture 2

one can try to compare them with plaintext words that are sim-

ilar. Example of words that begin and end in reversed digrams:

receiver, departed, repairer, redder, denuded, etc.

31

Computer and Network Security by Avi Kak Lecture 2

Figure 2: Single-letter relative frequencies in descending

order for a class of ciphers. (This figure is from Chapter 2 of William Stallings:

“Cryptography and Network Security”, Fourth Edition, Prentice-Hall.)

32

Computer and Network Security by Avi Kak Lecture 2

2.8: ANOTHER MULTI-LETTER CIPHER:
THE HILL CIPHER

• The Hill cipher takes a very different (more mathematical) ap-

proach to multi-letter substitution, as we describe in what follows.

• You assign an integer to each letter of the alphabet. For the

sake of discussion, let’s say that you have assigned the integers 0

through 25 to the letters ‘a’ through ‘z’ of the plaintext.

• The encryption key, call itK, consists of a 3×3 matrix of integers:

K =















k11 k12 k13
k21 k22 k23
k31 k32 k33















• Now we can transform three letters at a time from the plain-

text, the letters being represented by the numbers p1, p2, and

p3, into three ciphertext letters c1, c2, and c3 in their numerical

representations by

33

Computer and Network Security by Avi Kak Lecture 2

c1 = (k11p1 + k12p2 + k13p3) mod 26

c2 = (k21p1 + k22p2 + k23p3) mod 26

c3 = (k31p1 + k32p2 + k33p3) mod 26

• The above set of linear equations can be written more compactly

in the following vector-matrix form:

~C = [K] ~P mod 26

• Obviously, the decryption would require the inverse of K matrix.

~P =
[

K−1
]

~C mod 26

This works because

~P =
[

K−1
]

[K] ~P mod 26 = ~P

34

Computer and Network Security by Avi Kak Lecture 2

2.8.1: How Secure is Hill Cipher?

• It is extremely secure against ciphertext only attacks. That is

because the keyspace can be made extremely large by choosing

the matrix elements from a large set of integers. (The key space

can be made even larger by generalizing the technique to larger

matrices.)

• But it has zero security when the plaintext–ciphertext pairs are

known. The key matrix can be calculated easily from a set of

known ~P, ~C pairs.

35

Computer and Network Security by Avi Kak Lecture 2

2.9: POLYALPHABETIC CIPHERS: THE
VIGENERE CIPHER

• In a monoalphabetic cipher, the same substitution rule is used

at every character position in the plaintext message. In a polyal-

phabetic cipher, on the other hand, the substitution rule changes

continuously from one character position to the next in the plain-

text according to the elements of the encryption key.

• One of the best known examples of a polyalphabetic cipher is the

Vigenere cipher. In this cipher, you first “align” the encryption

key with the plaintext message. [If the plaintext message is longer than the

encryption key, you can repeat the encryption key, as we show below where the encryp-

tion key is “abracadabra”.] Now consider each letter of the encryption

key denoting a shifted Caesar cipher, the shift corresponding to

the letter of the key. This is illustrated with the help of the table

shown on the next page.

• Now a plaintext message may be encrypted as shown on the next

slide.

36

Computer and Network Security by Avi Kak Lecture 2

key: abracadabraabracadabraabracadabraab

plaintext: canyoumeetmeatmidnightihavethegoods

ciphertext: CBEYQUPEFKMEBK.....................

The table that is shown below illustrates what character substitu-

tion rule to use at each position in the plaintext. The substitution

rule depends on the encryption key letter that corresponds to that

position.

encryption key plain text letters

letter a b c d

substitution letters

a A B C D

b B C D E

c C D E F

d D E F G

e E F G H

.

.

z Z A B C

37

Computer and Network Security by Avi Kak Lecture 2

2.9.1: How Secure is the Vigenere Cipher?

• Since there exist in the output multiple ciphertext letters for each

plaintext letter, you would expect that the relative frequency dis-

tribution would be effectively destroyed. But as can be seen in

the plots in Figure 2, a great deal of the input statistical distri-

bution still shows up in the output. [The plot shown for Vigenere cipher is for an

encryption key that is just 9 letters long.]

• Obviously, the longer the encryption key, the greater the masking

of the structure of the plaintext. The best possible key is as long

as the plaintext message and consists of a purely random per-

mutation of the 26 letters of the alphabet. This would yield the

ideal plot shown in Figure 2. The ideal plot is labeled “Random

polyalphabetic” in that figure.

• In general, to break the Vigenere cipher, you first try to estimate

the length of the encryption key. This length can be estimated

by using the logic that plaintext words separated by multiples of

the length of the key will get encoded in the same way.

• If the estimated length of the key is N, then the cipher consists of

N monoalphabetic substitution ciphers and the plaintext letters

at positions 1, N, 2N, 3N, etc., will be encoded by the same

38

Computer and Network Security by Avi Kak Lecture 2

monoalphabetic cipher. This insight can be useful in the decoding

of the monoalphabetic ciphers involved.

• The historically best known example of a polyalphabetic cipher

is the Enigma machine that was used by the German military in

the Second World War. If the movie “The Imitation Game” star-

ring Benedict Cumberbatch and Keira Knightly is to be believed,

that machine was broken because the operators started all their

communications with the salutation “Heil Hitler!” or “Heil mein

Führer!”

39

Computer and Network Security by Avi Kak Lecture 2

2.10: TRANSPOSITION TECHNIQUES

• All of our discussion so far has dealt with substitution ciphers. We

have talked about monoalphabetic substitutions, polyalphabetic

substitutions, etc.

• We will now talk about a different notion in classical cryptogra-

phy: permuting the plaintext.

• This is how a pure permutation cipher could work: You write

your plaintext message along the rows of a matrix of some size.

You generate ciphertext by reading along the columns. The order

in which you read the columns is determined by the encryption

key:

key: 4 1 3 6 2 5

plaintext: m e e t m e

a t m i d n

i g h t f o

r t h e g o

d i e s x y

ciphertext: ETGTIMDFGXEMHHEMAIRDENOOYTITES

40

Computer and Network Security by Avi Kak Lecture 2

• The cipher can be made more secure by performing multiple

rounds of such permutations.

41

Computer and Network Security by Avi Kak Lecture 2

2.11: Establishing Secure Communications
for Fun (But Not for Profit)

This section has two goals:

• To demonstrate that if all that you want is to establish a medium-

strength secure communication link between yourself and a buddy,

you may be able to get by without having to resort to the full-

strength crypto systems that we will be studying in later lectures.

• To introduce you to my BitVector modules in Python and Perl.

You will be using these modules for several homework assign-

ments throughout this course.

If you are not multilingual in your scripting capabilities, it is sufficient

if you become familiar with either the Python version or the Perl

version of the BitVector module. Note that the scripts shown in this

section only provide a brief introduction to the modules. Please also

spend some time going though the APIs of the modules.

So here we go:

• Fundamentally, the encryption/decryption logic in the scripts

shown in this section is based on the following properties of XOR

42

Computer and Network Security by Avi Kak Lecture 2

operations on bit blocks. Assuming that A, B, and C are bit

arrays, and that ⊕ denotes the XOR operator, we can write

[A ⊕ B] ⊕ C = A ⊕ [B ⊕ C]

A ⊕ A = 0

A ⊕ 0 = A

• More precisely, the Python and Perl encryption/decryption scripts

in this section are based on differential XORing of bit blocks.

Differential XORing means that, as a file is scanned in blocks of

bits, the output produced for each block is made a function of

the output for the previous block.

• Differential XORing destroys any repetitive patterns in the mes-

sages to be encrypted and makes it more difficult to break en-

cryption by statistical analysis.

• The encryption/decryption scripts presented in this section re-

quire a key and a passphrase. While the user is prompted for the

key in lines (J) through (M), the passphrase is placed directly in

the scripts in line (C). In more secure versions of the scripts, the

passphrase would also be kept confidential by the parties using

the scripts.

• Since differential XORing means that the output for the current

block must depend on the output that was produced for the pre-

43

Computer and Network Security by Avi Kak Lecture 2

vious block, that raises the question of what to do for the first

bit block in a file. Typically, this problem is solved by using an

initialization vector (IV) for the differential XORing needed for

the first bit block in a file. We derive the needed initialization

vector from the passphrase in lines (F) through (I).

• For the purpose of encryption or decryption, the file involved is

scanned in bit blocks, with each block being of size BLOCKSIZE.

For encryption, this is done in line (V) of the script shown next.

Since the size of a file in bits may not be an integral multiple

of BLOCKSIZE, we add an appropriate number of null bytes to the

bytes extracted by the last call in line (V). This step is imple-

mented in lines (W) and (X) of the encryption script that follows.

• For encryption, each bit block read from the message file is first

XORed with the key in line (Y), and then, in line (Z), with the

output produced for the previous bit block. The step in line (Z)

constitutes differential XORing.

• If you make the value of BLOCKSIZE sufficiently large and keep

both the encryption key and the passphrase as secrets, it will be

very, very difficult for an adversary to break the encryption —

especially if you also keep the logic of the code confidential.

• The implementation shown below is made fairly compact by the

use of the BitVector module. [This would be a good time to become

44

Computer and Network Security by Avi Kak Lecture 2

familiar with the BitVector module by going through its API. You’ll be using

this module in several homework assignments dealing with cryptography and

hashing.]

#!/usr/bin/env python

EncryptForFun.py

Avi Kak (kak@purdue.edu)

January 21, 2014, modified January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

EncryptForFun.py message_file.txt output.txt

###

The encrypted output is deposited in the file ‘output.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the message file and the other for the ’’’

’’’encrypted output file’’’)

PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

numbytes = BLOCKSIZE // 8 #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector(textstring = textstr) #(I)

Get key from user:

45

Computer and Network Security by Avi Kak Lecture 2

key = None

if sys.version_info[0] == 3: #(J)

key = input("\nEnter key: ") #(K)

else:

key = raw_input("\nEnter key: ") #(L)

key = key.strip() #(M)

Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(N)

for i in range(0,len(key) // numbytes): #(O)

keyblock = key[i*numbytes:(i+1)*numbytes] #(P)

key_bv ^= BitVector(textstring = keyblock) #(Q)

Create a bitvector for storing the ciphertext bit array:

msg_encrypted_bv = BitVector(size = 0) #(R)

Carry out differential XORing of bit blocks and encryption:

previous_block = bv_iv #(S)

bv = BitVector(filename = sys.argv[1]) #(T)

while (bv.more_to_read): #(U)

bv_read = bv.read_bits_from_file(BLOCKSIZE) #(V)

if len(bv_read) < BLOCKSIZE: #(W)

bv_read += BitVector(size = (BLOCKSIZE - len(bv_read))) #(X)

bv_read ^= key_bv #(Y)

bv_read ^= previous_block #(Z)

previous_block = bv_read.deep_copy() #(a)

msg_encrypted_bv += bv_read #(b)

Convert the encrypted bitvector into a hex string:

outputhex = msg_encrypted_bv.get_hex_string_from_bitvector() #(c)

Write ciphertext bitvector to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputhex) #(e)

FILEOUT.close() #(f)

• Note that a very important feature of the script shown above is

that the ciphertext it outputs consists only of printable charac-

ters. This is ensured by calling get hex string from bitvector()

in line (c) near the end of the script. This call translates each

byte of the ciphertext into two printable hex characters.

46

Computer and Network Security by Avi Kak Lecture 2

• The decryption script, shown below, uses the same properties of

the XOR operator as stated at the beginning of this section to

recover the original message from the encrypted output.

• The reader may wish to compare the decryption logic in the loop

in lines (U) through (b) of the script shown below with the en-

cryption logic shown in lines (S) through (b) of the script above.

#!/usr/bin/env python

DecryptForFun.py

Avi Kak (kak@purdue.edu)

January 21, 2014, modified January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be ecrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

DecryptForFun.py encrypted_file.txt recover.txt

###

The decrypted output is deposited in the file ‘recover.txt’

import sys

from BitVector import * #(A)

if len(sys.argv) is not 3: #(B)

sys.exit(’’’Needs two command-line arguments, one for ’’’

’’’the encrypted file and the other for the ’’’

’’’decrypted output file’’’)

PassPhrase = "Hopes and dreams of a million years" #(C)

BLOCKSIZE = 64 #(D)

47

Computer and Network Security by Avi Kak Lecture 2

numbytes = BLOCKSIZE // 8 #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

bv_iv = BitVector(bitlist = [0]*BLOCKSIZE) #(F)

for i in range(0,len(PassPhrase) // numbytes): #(G)

textstr = PassPhrase[i*numbytes:(i+1)*numbytes] #(H)

bv_iv ^= BitVector(textstring = textstr) #(I)

Create a bitvector from the ciphertext hex string:

FILEIN = open(sys.argv[1]) #(J)

encrypted_bv = BitVector(hexstring = FILEIN.read()) #(K)

Get key from user:

key = None

if sys.version_info[0] == 3: #(L)

key = input("\nEnter key: ") #(M)

else:

key = raw_input("\nEnter key: ") #(N)

key = key.strip() #(O)

Reduce the key to a bit array of size BLOCKSIZE:

key_bv = BitVector(bitlist = [0]*BLOCKSIZE) #(P)

for i in range(0,len(key) // numbytes): #(Q)

keyblock = key[i*numbytes:(i+1)*numbytes] #(R)

key_bv ^= BitVector(textstring = keyblock) #(S)

Create a bitvector for storing the decrypted plaintext bit array:

msg_decrypted_bv = BitVector(size = 0) #(T)

Carry out differential XORing of bit blocks and decryption:

previous_decrypted_block = bv_iv #(U)

for i in range(0, len(encrypted_bv) // BLOCKSIZE): #(V)

bv = encrypted_bv[i*BLOCKSIZE:(i+1)*BLOCKSIZE] #(W)

temp = bv.deep_copy() #(X)

bv ^= previous_decrypted_block #(Y)

previous_decrypted_block = temp #(Z)

bv ^= key_bv #(a)

msg_decrypted_bv += bv #(b)

Extract plaintext from the decrypted bitvector:

outputtext = msg_decrypted_bv.get_text_from_bitvector() #(c)

Write plaintext to the output file:

FILEOUT = open(sys.argv[2], ’w’) #(d)

FILEOUT.write(outputtext) #(e)

FILEOUT.close() #(f)

48

Computer and Network Security by Avi Kak Lecture 2

• To exercise these scripts, enter some text in a file and let’s call

this file message.txt. Now you can call the encrypt script by

EncryptForFun.py message.txt output.txt

The script will place the encrypted output, in the form of a hex

string, in the file output.txt. Subsequently, you can call

DecryptForFun.py output.txt recover.txt

to recover the original message from the encrypted output pro-

duced by the first script.

• If you’d rather use Python 3, you can invoke these scripts as

python3 EncryptForFun.py message.txt output.txt

python3 DecryptForFun.py output.txt recover.txt

• What follows are the Perl versions of the two Python script shown

above. For at least those of you who would like to be proficient

in both Perl and Python, it would be educational to compare the

syntax used for doing the same things in the two versions. Since

the flow of logic in the two versions is identical, such a comparison

should be straightforward.

• In case you are puzzled by the statement in line (C), the call to

split with an empty regex as its first argument returns an array

of characters for the passphrase. This was done to establish parity

with line (C) of the Python version of the encryption script with

49

Computer and Network Security by Avi Kak Lecture 2

regard to how we may subsequently process the passphrase in

the rest of the scripts. You see, in Python, a string is directly

an iterable object, which allows for compact code to be written

for substring access and slicing. The call in line (C) of the script

shown below allows us to write similar substring access and string

slicing code in Perl with the help of Perl’s range operator.

#!/usr/bin/perl -w

EncryptForFun.pl

Avi Kak (kak@purdue.edu)

January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

EncryptForFun.pl message_file.txt output.txt

###

The encrypted output is deposited in the file ‘output.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

50

Computer and Network Security by Avi Kak Lecture 2

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]);

#(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

Get key from user:

print "\nEnter key: "; #(J)

my $key_input = <STDIN>; #(K)

$key_input =~ s/^\s+|\s$//g; #(L)

my @key = split //, $key_input; #(M)

Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new(bitlist => [(0)x$BLOCKSIZE]); #(N)

foreach my $i (0 .. int(@key / $numbytes) - 1) { #(O)

my $keyblock = join ’’, @key[$i*$numbytes .. ($i+1)*$numbytes - 1]; #(P)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(Q)

}

Create a bitvector for storing the ciphertext bit array:

my $msg_encrypted_bv = Algorithm::BitVector->new(size => 0); #(R)

Carry out differential XORing of bit blocks and encryption:

my $previous_block = $bv_iv; #(S)

my $bv = Algorithm::BitVector->new(filename => shift); #(T)

while ($bv->{more_to_read}) { #(U)

my $bv_read = $bv->read_bits_from_file($BLOCKSIZE); #(V)

if (length($bv_read) < $BLOCKSIZE) { #(W)

$bv_read += Algorithm::BitVector->new(size =>

($BLOCKSIZE - length($bv_read))); #(X)

}

$bv_read ^= $key_bv; #(Y)

$bv_read ^= $previous_block; #(Z)

$previous_block = $bv_read->deep_copy(); #(a)

$msg_encrypted_bv += $bv_read; #(b)

}

Convert the encrypted bitvector into a hex string:

my $outputhex = $msg_encrypted_bv->get_hex_string_from_bitvector(); #(c)

Write ciphertext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $outputhex; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

51

Computer and Network Security by Avi Kak Lecture 2

• Finally, what follows is the Perl version of the decryption script.

Perhaps the only statement that might seem a bit complex is in

line (W). That is because Perl’s version of the BitVector module

does not come with an overloading for the slice operator. Recall,

Python comes with the slice operator ’:’ that is overloaded in the

BitVector module to return a slice of a given BitVector object

as another BitVector object. At least with respect to substring

access, the role that ’:’ plays in Python can be approximated by

the range operator ’..’ in Perl. However, the range operator is

not overloaded in the Perl version of the BitVector module. In

the Perl module, you can call get bit() method with an array

argument to return a slice a bit vector — but only in the form of

an array of bits. That’s why, in line (W) in the code shown below,

the call to get bit() is enclosed inside a call to the BitVector

constructor so that the slice returned is itself a BitVector object.

#!/usr/bin/perl -w

DecryptForFun.pl

Avi Kak (kak@purdue.edu)

January 11, 2016

Medium strength encryption/decryption for secure message exchange

for fun.

Based on differential XORing of bit blocks. Differential XORing

destroys any repetitive patterns in the messages to be encrypted and

makes it more difficult to break encryption by statistical

analysis. Differential XORing needs an Initialization Vector that is

derived from a pass phrase in the script shown below. The security

level of this script can be taken to full strength by using 3DES or

AES for encrypting the bit blocks produced by differential XORing.

Call syntax:

###

DecryptForFun.pl output.txt recover.txt

###

52

Computer and Network Security by Avi Kak Lecture 2

The decrypted message is deposited in the file ‘recover.txt’

use strict;

use Algorithm::BitVector; #(A)

die "Needs two command-line arguments, one for the name of " .

"message file and the other for the name to be used for " .

"encrypted output file"

unless @ARGV == 2; #(B)

my @PassPhrase = split //, "Hopes and dreams of a million years"; #(C)

my $BLOCKSIZE = 64; #(D)

my $numbytes = int($BLOCKSIZE / 8); #(E)

Reduce the passphrase to a bit array of size BLOCKSIZE:

my $bv_iv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]); #(F)

foreach my $i (0 .. int(@PassPhrase / $numbytes) - 1) { #(G)

my $textstr = join ’’, @PassPhrase[$i*$numbytes .. ($i+1)*$numbytes-1]; #(H)

$bv_iv ^= Algorithm::BitVector->new(textstring => $textstr); #(I)

}

Create a bitvector from the ciphertext hex string:

open FILEIN, shift or die "unable to open file: $!"; #(J)

my $encrypted_bv = Algorithm::BitVector->new(hexstring => <FILEIN>); #(K)

Get key from user:

print "\nEnter key: "; #(L)

my $key_input = <STDIN>; #(M)

$key_input =~ s/^\s+|\s$//g; #(N)

my @key = split //, $key_input; #(O)

Reduce the key to a bit array of size BLOCKSIZE:

my $key_bv = Algorithm::BitVector->new(bitlist => [(0) x $BLOCKSIZE]); #(P)

foreach my $i (0 .. int(@key / $numbytes) - 1) { #(Q)

my $keyblock = join ’’, @key[$i*$numbytes .. ($i+1) * $numbytes - 1]; #(R)

$key_bv ^= Algorithm::BitVector->new(textstring => $keyblock); #(S)

}

Create a bitvector for storing the decrypted plaintext bit array:

my $msg_decrypted_bv = Algorithm::BitVector->new(size => 0); #(T)

Carry out differential XORing of bit blocks and decryption:

my $previous_decrypted_block = $bv_iv; #(U)

foreach my $i (0 .. int(length($encrypted_bv)/$BLOCKSIZE - 1)) { #(V)

my $bv = Algorithm::BitVector->new(bitlist => $encrypted_bv->get_bit(

[$i*$BLOCKSIZE .. ($i+1)*$BLOCKSIZE - 1])); #(W)

my $temp = $bv->deep_copy(); #(X)

$bv ^= $previous_decrypted_block; #(Y)

$previous_decrypted_block = $temp; #(Z)

$bv ^= $key_bv; #(a)

53

Computer and Network Security by Avi Kak Lecture 2

$msg_decrypted_bv += $bv; #(b)

}

Extract plaintext from the decrypted bitvector:

my $output_text = $msg_decrypted_bv->get_text_from_bitvector(); #(c)

Write plaintext bitvector to the output file:

open FILEOUT, ">" . shift or die "unable to open file: $!"; #(d)

print FILEOUT $output_text; #(e)

close FILEOUT or die "unable to close file: $!"; #(f)

• Here’s how you would call the Perl scripts:

EncryptForFun.pl message.txt output.txt

DecryptForFun.pl output.txt recover.txt

• The security level of this script can be taken to full strength by

using 3DES or AES for encrypting the bit blocks produced by

differential XORing.

54

Computer and Network Security by Avi Kak Lecture 2

2.12: HOMEWORK PROBLEMS

1. Use the ASCII codes available at http://www.asciitable.com to manu-

ally construct a Base64 encoded version of the string “hello\njello”.

Your answer should be “aGVsbG8KamVsbG8=”. What do you think the

character ‘=’ at the end of the Base64 representation is for? [If

you wish you can also use interactive Python for this. Enter the following sequence of commands “import

base64” followed by “base64.b64encode(’hello\njello’)”. If you are using Python 3, make sure you

prefix the argument to the b64encode() function by the character ‘b’ to indicate that it is of type bytes as

opposed to of type str. Several string processing functions in Python 3 require bytes type arguments and

often return results of the same type. Educate yourself on the difference between the string str type and bytes

type in Python 3.]

2. A text file named myfile.txt that you created with a run-of-

the-mill editor contains just the following word:

hello

If you examine this file with a command like

hexdump -C myfile.txt

you are likely to see the following bytes (in hex) in the file:

68 65 6C 6C 6F 0A

55

Computer and Network Security by Avi Kak Lecture 2

which translate into the following bit content:

01101000 01100101 01101100 01101100 01101111 00001010

Looks like there are six bytes in the file whereas the word “hello”

has only five characters. What do you think is going on? Do you

know why your editor might want to place that extra byte in the

file and how to prevent that from happening?

3. All classical ciphers are based on symmetric key encryption. What

does that mean?

4. What are the two building blocks of all classical ciphers?

5. True or false: The larger the size of the key space, the more secure

a cipher? Justify your answer.

6. Give an example of a cipher that has an extremely large key space

size, an extremely simple encryption algorithm, and extremely

poor security.

7. What is the difference between monoalphabetic substitution ci-

phers and polyalphabetic substitution ciphers?

8. What is the main security flaw in the Hill cipher?

56

Computer and Network Security by Avi Kak Lecture 2

9. What makes Vigenere cipher more secure than, say, the Playfair

cipher?

10. Let’s say you have used the encryption and decryption scripts

shown in Section 2.11 through the following calls

EncryptForFun.py message.txt output.txt

DecryptForFun.py output.txt recover.txt

or the Perl versions of the same, and that, subsequently, you

compare the input message file and the output produced by de-

cryption by calling

diff message.txt recover.txt

you are likely to see the following message returned by the diff

command:

Binary files message.txt and recover.txt differ

and, yet, if you print out the contents of the two files by

cat message.txt

cat recover.txt

the two files appear to be identical. What do you think is going

on? [HINT: Use the ’cat -A’ command to output the contents of the two files.

Also, instead of calling diff as shown above, try calling ’diff -a’ which forces a text

only comparison on the two files.]

57

Computer and Network Security by Avi Kak Lecture 2

11. Programming Assignment:

Write a script called hist.pl in Perl (or hist.py in Python)

that makes a histogram of the letter frequencies in a text file.

The output should look like

A: xx

B: xx

C: xx

...

...

where xx stands for the count for that letter.

12. Programming Assignment:

Write a script called poly_cipher.pl in Perl (or poly_cipher.py

in Python) that is an implementation of the Vigenere polyalpha-

betic cipher for messages composed from the letters of the English

alphabet, the numerals 0 through 9, and the punctuation marks

‘.’, ‘,’, and ‘?’.

Your script should read from standard input and write to stan-

dard output. It should prompt the user for the encryption key.

Your hardcopy submission for this homework should include some

sample plaintext, the ciphertext, and the encryption key used.

Make your scripts as compact and as efficient as possible. Make

liberal use of builtin functions for what needs to be done. For

example, you could make a circular list with either of the following

two constructs in Perl:

58

Computer and Network Security by Avi Kak Lecture 2

unshift(@array, pop(@array))

push(@array, shift(@array))

See perlfaq4 for some tips on array processing in Perl.

13. Programming Assignment:

This is an exercise in you assuming the role of a cryptanalyst and

trying to break a cryptographic system that consists of the two

Python scripts you saw in Section 2.11. As you’ll recall, the script

EncryptForFun.py can be used for encrypting a message file and

the script DecryptForFun.py for recovering the plaintext message

from the ciphertext created by the first script. You can download

both these scripts in the code archive for Lecture 2.

With BLOCKSIZE set to 16, the script EncryptForFun.py produces

the following ciphertext output for a plaintext message that is a

quote by Mark Twain:

20352a7e36703a6930767f7276397e376528632d6b6665656f6f6424623c2d\

30272f3c2d3d2172396933742c7e233f687d2e32083c11385a03460d440c25

all in one line. (You can copy-and-paste this hex ciphertext into

your own script. However, make sure that you delete the back-

slash at the end of the first line. You can also see the same

output in the file named output5.txt in the code archive for Lec-

ture 2.) Your job is to both recover the original quote and the

encryption key used by mounting a brute-force attack on the en-

cryption/decryption algorithms. [HINT: The logic used in the scripts

implies that the effective key size is only 16 bits when the BLOCKSIZE variable is set to

16. So your brute-force attack need search through a keyspace of size only 216.]

59

Computer and Network Security by Avi Kak Lecture 2

CREDITS

The data presented in Figure 1 and Table 1 are from http://

jnicholl.org/Cryptanalysis/Data/EnglishData.php. That

site also shows a complete digram table for all 676 pairings of the

letters of the English alphabet.

60

