Logo for Kids: An Introduction

by Bob DuCharme

Table of Contents

Tothe AdUILS (BN LOGOPNITES)cvuiiiieiieete ettt bbb
BEfOr@Y OU GEE SLAIMTEM.veveieieieie ettt sttt a e b besae e besbesee st e be st e st antene e e eneeneeneens
1. Robots, CommaNdS, 8N TUIIES ...ttt b bbb b e e b e b e e e e e e e e eneeneas
What isProgramming, @and WHY ISTEFUN?cooiiie ettt s e st nreens 1
[IoTo T alo 1 2T= (= 1=V oo o SRS 4
GiviNg INStrUCHONSTOtNE TUIIEccuee e e r e nesre e s 7
ETTONMEBSSA0ES. ...ttt e e e s ae e see e e se e e e e s R e e e e e e n e e r e n e r e e n e e 12
MOTETUIMTEDIEWING ...ttt ettt b et bbbt e bt e bt e st b st b et b et b et b et et ene b e b e 13
Picking Up and PUtting DOWN tREPENooiiiiiee ettt e 16
L1 1= 011 0T 161 o SRS 17
RUNNING SOMEONEEISE'SPIOGIAMc.veieieieeeeeeeee ettt st e e st te e st e e e e e e e eseesesseesesresaesaesrenreseeseenen 20
WHNBEWELEBINEUottt bbbttt b et b et b et b et s et e st b e st st e et e e b e eenas 23
New CommandSinthiSCREPLEN ..ottt ebe e 24
MOTETRINGSTO TTY ..ttt ettt bbb b e e eb e se bt s e bt s e e bt s b e st s b et e b et eb e e ebeneebeseene e 24
2. Writing and RUNNING PrOGIaMScoouiieiiieeeieetiee sttt se st beeae st sbesbesaeseesbeseeseesense e e e eneeneenearens
[0 0 o LS USRS 25
= 2T T AT o0 Sy A o o= OSSR 31
B 01U T 0T o 33
Creating ProgramsWith @ TEXE EQITONcccoiriiirieireirere et 34
Making the Program Easi€r tOREAooueireiriericree ettt 40
o LH o1 [TSR RSTUTURURPRRRN 42
W AITADIES......e ettt et ettt a e h e b e e h e e Rt e b e e Rt Rt E e b e sE e e e e et e e ne bt e e R ebe e e 44
ROV A== g = o RSP 50
New Commands and Operationsin ThiSChapterccccvevererereeecre e e 51
N TS YL 0] 1 =0T LT 51
INEW OPEIBEIONS. ...ttt sttt sttt sttt se et e et bt b et b et e b e st e b e se b e seeb e ae e bt se e bt e b e bt e b e st e b et sbe e nbe e nbens 52
Y o = I 0110] (R I VRS SSTRSRR 52
3. CreatiNg @M At GaAME........ocieececeee ettt e st e st e e e e be e bt e st e seeaeesaeeaeesreetesreentesreentenreenre e
TelliNgLOGOTODOMENceeceeeeeececee ettt e e be s tese e e e e e e e eneeneeneeneas 53
Creating Interactive Programs: Having Y our User Set Variable Values..........ccocvvevevevvscesescseeeceeeeeeen 58
Your First Interactive Program: ANAGAEScoieiieiiee e 61
PiCKiNG RANOM NUIMDEIS ...ttt ettt sttt b e e b e e e 63
Having Y our Program MaKeDECISIONS........c.coiririirieiiiriesie ettt bbb et be e e e s e e neeneas 65
StArting Y OUr Ma GaME.......coiiceeee ettt et e e e s ae s e e saeeneesreestesaeensesnaenrenns 68
B AT 1 1= 0T oS 70
Repeating the Math Questionsand KEEPIiNG SCOMEccveverueieririeeeeire e se e e e e s sseens 73
IMProving the Program’'SINEEITACE ... 76
WHEEWELEAINEA ...ttt sttt b bbb ket e e et et e se e e e n e et eneebeebeeaesbesbeseeseeean 82
New Commands and Operationsin ThiS Chapter ..ot 82
NEW COMIMANGS.ttt ettt ettt et et et a et st h e e b e e aeebeebesbesb e et et e se e e enbe e et e st eneeaeebesbenbeses 82
NEW OPETBLIONS.eveeieeiesiestestesteseesteee e e e e e sse s e s testesaeseestestesaensessesesseseeseaseasesseseessenbeseeseentensesensenennes 83
Ko = I 0T] (o R I 83

A GIOSSANY ...ttt ettt ettt a bbbt h bt £ bt Ak £ R R R R R £ R e AR RS h e £ Rt e b e R e bt A e bt R e Rt b e Rt b et bt b et enn

To the Adults (and Logophiles)

| began writing a an introduction to programming aimed at middle-school aged kids and decided not to make a com-
plete book out of it, so I'm just putting it on the web for anyone who wantsiit. It's about 90 pages, introducing kids to
the basic concepts of programming using UCB Logo. | decided to use UCB Logo because it runs on PCs and the
Mac, and when | had ideas for turning this into a complete book and publishing it, | thought it would have a better
chance in the educational market if it used a Logo distribution that worked on both platforms. The fact that UCB
Logo isfree, and runs under Linux, are also nice bonuses.

The book assumes that UCB Logo is aready installed on the computer that its reader will be using and that the
reader knows where to find the icon used to start it up. For information on installing it, see
http://www.snee.com/logo.

The "Before You Get Started" section following this one is aimed at the book's audience, but you should read it as
well to help your young friend decide whether he or she is really ready for the book. Kids who've had any kind of
computer class at school and are reading chapter books on their own should be fine.

To answer afew questions some of you might have...

» Why doesn't the book cover the edi t command, workspaces, and other features that many people feel are inte-
gral to Logo? Because they're too Logo-specific. In deciding which parts of Logo to teach, | chose aspects of the
language with equivalents in other programming languages so that the reader could more easily move on to other
languages. My main goal in writing this book is to get kids interested in programming and ready to move onto
other languages, not to convince them of the beauty of Logo—they won't be in any position to judge Logo as a
language until they've learned a few other languages, anyway.

» Why doesn't the book have the reader use Jove, the text editor that comes with UCB Logo? Because after using
it under Windows 98 and Windows 2000, | decided that the relationship between UCB Logo and Jove was too
flaky to use under Windows, even when following the installation's suggestion to create al ogo. bat file that
sets the EDITOR environment variable to point to Jove and so forth. Kids shouldn't have to deal with that flaki-
ness. So, my installation notes show how to point Windows UCB Logo to Notepad instead.

Much as | love Emacs, if you know a young reader who will be using Logo under Linux, prepare to do a bit
more tech support.

* Why do the filenames created as part of the exercises have an extension of | ogo after the filename's period,
when other Logo program files that come with UCB Logo don't use extensions? For three reasons: first, because
when you tell the Windows Notepad editor to edit a file and only give a filename and not an extension (for ex-
ample, f | ower instead of f| ower. | 0go.) it automatically assumes an extension of t xt if you don't add a
period after the filename. When you finish editing the file and Berkeley Logo automatically tries to load it, it
won't find it, because it doesn't know about the t xt extension that got added on. Being explicit with the exten-
sion makes this easier.

Secondly, when the book's readers move on to other programming languages, they'll learn that when a filename
has a specific extension to indicate that the file holds source code in a particular language, it makes it easier to
know exactly what they can do with do with that file. Simple C, C++, Java, and Perl programs can look quite
similar, but if agiven file has an extension of ¢, cpp, j ava, or pl , its purpose is much clearer.

Logo for Kids iv copyright 2002 Bob DuCharme

Lastly, | don't want the reader to think that there is some magic relationship between a filename and a procedure
name. A f | ower procedure doesn't have to be defined in afilecalled f | ower ; it can be defined in afile called
tree,tenp.tst,x2934732,orfl ower. | ogo. | think thislast spelling makes the most sense.

Logo for Kids % copyright 2002 Bob DuCharme

Before You Get Started...

» Do you have UCB Logo already installed? If not, have someone help you get it by using a web browser to go
to http://www.snee.com/logo. This web page explains how you can get UCB Logo off the Internet for your com-
puter.

» Have you ever done any typing or keyboarding on a computer? When this book tells you to type a few
words on the computer keyboard, it could be very frustrating if it takes a while to find each key. Y ou should al-
ready know how to type lower-case and upper-case letters, how to use the spacebar and cursor keys, and where
the Enter and Backspace keysare (or, if you're using a Macintosh, where the return and delete keys are, be-
cause they do the same things). If you don't know, ask your teacher or librarian about programs that can teach
you to use the computer keyboard a little better before you learn programming. It's kind of like using a musical
instrument—you can't make much music until you know where the notes are!

e Have you ever used a program where you create something, save it in a file with a name you make up
yourself, and then open the file again later? (You should aready know what afileis, too.) For example, per-
haps you've drawn a picture on the computer screen or you wrote a story, then saved it, and opened it up later. If
not, you may need some help when you save the Logo programs that you create and then open them up to use
again later.

 Remember, there'saglossary in the back of thisbook. A glossary islike adictionary, but instead of defining
thousands of words, it just defines the new words in one book. If you see aword in this book and you aren't sure
what it means, check the glossary.

This book is kind of like one of those Lego, Erector Set or K'nex kits. The book gives you pieces of the Logo pro-
gramming language, just like those kits give you blocks or other building pieces, and it shows you how to put them
together into several different projects. After you've built those projects, you'll have a better idea of what the differ-
ent pieces can do. Then thereal fun starts: it's time to make up your own creations!

Logo for Kids vi copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

Robots, Commands, and Turtles

What is Programming, and Why Is It Fun?

Logo is a computer programming language designed to help kids and adults learn programming quickly and easily.
But what is a programming language? Why would it be fun to learn one?

Imagine that you have a robot named Ringo. You only know of seven words that Ringo understands. GO, FOR-
WARD, BACKWARD, TURN, LEFT, RIGHT, and FEET. Your robot also understands numbers. When you say
"GO FORWARD 3 FEET" Ringo moves forward three feet. When you say "TURN LEFT," Ringo turns to his left.
If you say "MAKE ME A SANDWICH," Ringo doesn't do anything. Why? Because none of the words in the in-
struction "make me a sandwich" are part of Ringo's language—he only understands numbers and the words GO,
FORWARD, BACKWARD, TURN, LEFT, RIGHT, and FEET.

Now, let's say that you like to leave Ringo in the living room by the front door so that you can show him to your
friends when they come over. One day, your mom tells you "This room is a mess! Put away your stuff! Ringo be-
longs in your bedroom!" You don't want to pick up Ringo and carry him, because he's too heavy. You can't say
"RINGO! GO TO MY BEDROOM!" because he might understand the word "GO," but he doesn't understand any of
the other words.

If you can give Ringo the right directions to your bedroom, though, you can get him to go there himself. So you tell
him how to get there with these directions:

* GO FORWARD 10 FEET

e GOLEFT

* GO FORWARD 3 FEET

* GORIGHT

* GO FORWARD 4 FEET

* GORIGHT

* GO FORWARD 11 FEET

Logo for Kids 1 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

And he goes!

hallway

4 1.
| I

3 ft.

living kitchen
room 10 1.

Ringo goes from the living room by the front door to your bedroom

Y ou know that you must be careful—if you said "GO FORWARD 12 FEET" when you should have said "GO FOR-
WARD 10 FEET," he's going to bump into awall, and that's not good for Ringo or the wall.

The next day, you play with Ringo, and have him chase the cat around the living room. When you're done, you leave
him by the front door because one of your friends from school is coming over, and you want to show Ringo to her.
But again, your Mom says: "This room is a mess! Put away your stuff! Ringo belongs in your bedroom!" So again
you tell Ringo:

+ GO FORWARD 10 FEET

* GOLEFT

Logo for Kids 2 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

GO FORWARD 3 FEET
GO RIGHT
GO FORWARD 4 FEET
GO RIGHT

GO FORWARD 11 FEET

And Ringo goes to your room.

The next day, after you play with Ringo, your Mom comes in the living room and says "I'm really getting tired of
finding Ringo in here! Put that robot away right now!" Y ou say to yourself, "I'm really getting tired of repeating that
long list of directions. Sometimes | get the numbers mixed up, and Ringo bangs into a wall, and Mom gets even
madder. | wish | could just say 'Ringo! Go to my room!"

So you look in the little book that came with Ringo, and find out about four more words that he knows: NEW,
WORD, START, and END. Using these words, you can teach Ringo new words. When you tell Ringo "NEW
WORD," the next word you say after that is the new word you're teaching him. Then, you say "BEGIN" and explain
what the new word means. (Remember, when you explain anything to Ringo, you have to stick to words that he al-
ready understands.) When you're done explaining, you say "END" and Ringo remembers that the explanation in be-
tween when you said "BEGIN" and when you said "END" goes with the new word. For example, imagine if you
said this to Ringo to teach him the word "HOME":

NEW WORD HOME
BEGIN

GO FORWARD 10 FEET
GO LEFT

GO FORWARD 3 FEET
GO RIGHT

GO FORWARD 4 FEET
GO RIGHT

GO FORWARD 11 FEET
END

Now, when your mother says "Get that robot out of the living room!" you just say "HOME!" Ringo knows what
"home" means. GO FORWARD 10 FEET, GO LEFT, GO FORWARD 3 FEET, GO RIGHT, GO FORWARD 4
FEET, GO RIGHT, GO FORWARD 11 FEET. And he goes back to your room!

Logo for Kids 3 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

If you did this, you would be programming Ringo. The series of steps are the program, and the "HOME" part is the
name of the program you wrote for Ringo. The programming language is the words that Ringo understands: the
eleven words GO, FORWARD, BACKWARD, TURN, LEFT, RIGHT, FEET, NEW WORD, START, and END.

Actualy, alanguage is more than just the vocabulary, or list of words that you can use; it's also the rules for putting
those words together. If you told Ringo "FEET GO END 5," he would recognize al the words, but he wouldn't
know what to do, because you put those words together in a sentence that he doesn't understand. When you learn
any new language, whether it's a computer language such as Logo or a spoken language such as Spanish or Chinese,
you learn the words you can use and how to put them together. We call this collection of rulesagrammar.

It would be alot of fun to have arobot obey your instructions and learn new words from you. A computer can't walk
from one room to another like Ringo, but it can do many things that a robot can't do. It can make pictures, make mu-
sic, send messages back and forth to other computers connected to it, and many other things. Y ou may not have a
robot, but in your home or school or library there's probably a computer that you can use. Once you learn some in-
structions that you can give to a computer and learn how to put some of those instructions into a list and then give
that list a name, you can teach your computer to do new things. Making your computer do these new thingsis as
easy as sending Ringo to the bedroom by telling him one word. This is what writing and running programs is all
about. Every time you play a game on a computer or a Nintendo or Sega machine or look at web pages on the Inter-
net or draw pictures on a computer screen, you're running a computer program that someone wrote. After you read
this book, you'll be able to write your own programs!

In our story about Ringo, we had a special little made-up language that we used to give him instructions. What is the
language you use to program your computer? What are the words that your computer understands, and how do you
put those words together? There are actually many languages to choose from. Some are better for inventing new
computer games, some are better for controlling robots, some are better for describing music, and some are better for
inventing new computer languages. These computer programming languages often have strange or funny names like
Java, C, C++ (pronounced "see plus plus'), C# ("see sharp,” like the musical note), Python, Ruby, shell script, as-
sembly language, or Logo. (When the people who make Lego building blocks invented a programming language to
control their Mindstorms robots, they called it "RCX Code," and they based it on Logo. So if you learn Logo, you'll
have a good head start at learning the language that controls Mindstorms robots as your next computer language.)

Try This!

Do you know any programmers? Maybe your Mom, or Dad, one of their
friends, or someone who works with them? Ask them what programming
language they like to use and why.

Logo and Berkeley Logo

The Logo programming language was invented over thirty years ago to make it easier for kids to learn how to pro-
gram computers. Logo could control arobot that was similar to Ringo the robot, but Logo controlled a robot turtle.

Logo for Kids 4 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

(It was aso different from Ringo because someone really made it—Ringo is just a story that | made up for this
book.) Instead of walking around someone's home, the robot turtle walked around on a piece of paper. It held a pen
on the paper so that it drew lines as it walked around. Instead of writing a program to send the turtle from one room
to another, you could write programs to draw pictures. The very first Logo robot turtle was named "Irving."

It was expensive to make robot turtles and hook them up to computers. A new version of Logo was invented where
the programs that people wrote with Logo controlled a pretend turtle robot on the computer screen instead of areal
robot turtle on a piece of paper. Y ou could still write the same programs to draw pictures, but the picture was on the
screen. If you really wanted your picture on a piece of paper, you could send the picture to your computer's printer,
just like you do after you draw a picture on a computer screen today.

A Logo interpreter isaprogram that lets you give instructions to the pretend turtle robot and then shows you the re-
sults of your instructions. Y ou can give it one instruction and see what happens (just like you could tell Ringo the
robot "GO FORWARD 3 FEET"). Y ou can also put a bunch of instructions together, save it as a program, and then
run the program. A Logo interpreter isn't just about turtles, though; we'll see how you can write programs that make
up stories or create computer games with no help from any turtles. People usually start Logo programming by mak-
ing pictures with the turtle because it's fun and easy, and that's what we'll do.

There are different Logo interpreters that you can choose from. We're going to use one called Berkeley Logo for two
reasons: firgt, it's free. Second, it runs on computers that run the Microsoft Windows operating system, Macintosh
computers, and computers that run the Linux operating system, so everyone can use Berkeley Logo.

What's an Operating System?

An operating system is a special program that starts up as soon as you
turn on a computer. You can't do anything else with the computer until
the operating system is up and running. In fact, when you turn on a com-
puter and have to wait before you start up your favorite game or other
program, that's what you're waiting for. When you click an icon on your
screen or pick something on a menu to start up a program, you're actu-
ally telling the operating program to start that program up. When you
send a picture or a story to the printer, you're really telling the operating
system to send it to the printer.

A program that works on a computer with one operating system won't al-
ways work on a computer that uses a different operating system. Luckily,
Berkeley Logo runs on several different operating systems.

Macintosh computers, which only run the Macintosh operating system,
are popular in schools. Programmers often like the Linux operating sys-
tem (pronounced "linnix"), and Microsoft Windows is popular in offices
and on home computers.

Logo for Kids 5 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

Knowing how to use different operating systems is like knowing how to
play different musical instruments or how to play different sports: it
means that you can do more, and you can have more fun!

The"Berkeley" in "Berkeley Logo" isthe University of Californiaat Berkeley, the school where Berkeley Logo was
invented. (Sometimes the program is called "UCB Logo.") The study of programming languages, operating systems,
and other parts of building and using computer programs is called computer science. A lot of the most important
work in the history of computer science took place at the University of California at Berkeley.

Let's start up Berkeley Logo.

* Whenever you see words that look like this in this book, that means that they describe something for
you to do. Follow the instructions, and you'll make Berkeley Logo do the things that you see it doing in
the picturesin the book.

Double-click the Berkeley Logo icon to start up this Logo interpreter program. (If you are using the
Windows oper ating system, you may need to click a different icon called " logo.bat" to start up Berkeley
Logo. Ask whoever helped to set up Berkeley Logo on your computer.)

On a Macintosh, you'll see two windows open up. One is where where your turtle will draw pictures, and the other
window, which says "Welcome to Berkeley Logo" in it, is where you type instructions to Logo. If you can't see both
Logo windows on your Macintosh, one might be in front of the other; try moving the one you do see to the side. On
aWindows or Linux computer, you'll just see the "Welcome to Berkeley Logo" window when you start up Logo.

The little question mark in the white window is called a prompt or command prompt. This is how most computers
show you that they're ready for you to enter an instruction. The underscore line (_) next to the bottom of the ques-
tion mark is called the cursor. The cursor shows where your letters, numbers, and spaces will appear on the screen
when you type them on the computer keyboard. In our story about Ringo the Robot, we used our voice to give
Ringo instructions, but we'll give instructionsto our Logo turtle by typing them on the keyboard.

Logo for Kids 6 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

€ UCB Logo =1 E3
W
\cu rsor
prompt

Opening UCB Logo screen

Giving Instructions to the Turtle

Let's enter an instruction:

Tell theturtle to take 50 steps forward by typing the instruction below. (Whenever you seeletterst hat
| ook like this,likeforward 50 below, it's something for you to type on your computer's key-
board.)

forward 50

Welcome to Berkeley Logo wersion 5.1
? forward 50_

Entering your first instruction

Before you press the Enter key, here are a few things to remember about typing in an instruction that tells Logo to

Logo for Kids copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

do something:

Type any spaces just as you see them in the book. For the instruction above, that means you have to type a space
after the"d" in "forward." If you forget this space, you'll type "forward50," which is not something that Logo un-
derstands.

If you make any typing mistakes, you can press the Backspace key (or, on a Macintosh, the delete key) to
move your cursor back to the mistake and fix it. On PCs, the Backspace key might have the word
"Backspace," or it might have an arrow pointing to the left. The cursor key that moves your cursor to the left will
also have an arrow pointing to the left, but if there's one on your Backspace key it will be bigger than the one
on the cursor key.

Logo is not case-sensitive. That means it doesn't care whether you type instructions using upper-case |etters,
lower-case letters, or a combination of upper- and lower-case. Y ou could type the instruction above as "FOR-
WARD 50" or "FORwWArD 50" or "forWARD 50" and it would work just aswell.

The word instruction has a special meaning in Logo. The Logo programming language has various specia
words, like the word f or war d and others that we'll learn soon. An instruction is a combination of one or more
special words and the information that they need to do their job like the number "50" above. Usually, a complete
line that you type in to Logo (like f or war d 50) is an instruction, although an instruction can be spread out
over multiple lines, and you can also put multiple instructions on one line.

Pressthe Enter key. Thistells UCB Logo to execute, or run, thetyped instruction. (Macintoshes call this
key thereturn key, so if you're using a Mac, then whenever this book tells you to press the Enter key,
pressyour return key.)

& UCB Logo

Welcone to Berkeley Logo wersion 5.1
? forward 50
7

Logo for Kids 8 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

The turtle responds to your instruction

Your turtle shows up as alittle triangle pointing up. It moves forward 50 steps, drawing a white line on
the black background as it goes. It probably appeared and moved forward so quickly that you didn't
even seeit move. But wheredid it first appear?

* On a Windows computer, you only have one Logo window, so part of that window goes black and
the drawing happensthere.

* On a Macintosh, when you first started up UCB Logo, two windows appeared: the one where you
type your instructions and the one where the turtle draws. After you type your instruction to the
turtlein theinstructionswindow you'll seetheresult in the other window.

e Onacomputer running Linux, thereis a separate window for turtle drawing, aswith the Macintosh,
but this window doesn't appear until Logo needs it. So, when you execute the command above, the
second window suddenly appears and the line gets drawn there.

Thef orwar d 50 instruction that you typed also scrolled up aline. That means that it moved up on the screen just
asif it wereon aroll of paper that unrolled alittle so that the next instruction could be typed on a blank line under it.
As amatter of fact, thirty years ago, this is how most computers really worked—instead of a monitor (that's the part
of your computer that looks like a TV set) they had a printer that kept unrolling paper to show the instructions that
you typed at the keyboard and the computer's responses to those instructions.

The line that the turtle drew on your screen wasn't very long. If the turtle took fifty steps, they must have been tiny
steps. If you want to draw longer lines, you can use much bigger numbers in your instructions. For now, don't enter
any instructions unless this book tells you to. Y ou don't want to accidentally send your turtle somewhere where you
don't know how to get it back! There will be a chance to play after you learn afew more instructions.

Commands and Instructions

The f or war d part of what you typed is called a command. As we'll see
later, certain commands, all by themselves, don't make much sense to
Logo—for example, whenever you tell the turtle to move forward, you
have to tell it how far to move forward. This extra information that some
commands need are called parameters (pronounced "puh-ram-ih-terz.")
When you put together a command with any parameters that it needs,
you have a complete instruction for Logo to follow.

Just like Ringo the Robot, the turtle understands instructions that tell it to turn. Unlike Ringo, you don't have to use

Logo for Kids 9 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

the word "turn" with the turtle—just say "left" or "right" and it knows what you mean. Let'stry it.

* Enter thisinstruction:
left 90

90 what? Not 90 steps. The distance your turtle turns is measured in something called " degrees,” just
like a thermometer measures the temperature in degrees. (It's the same word we use to measure tem-
perature with a thermometer, but it means something different here)) Thel eft 90 instruction tells
theturtleto turn left 90 degrees.

* Executetheinstruction. (That is, press Enter).
The triangle turns, and then part of the triangle overlaps with the line that the turtle drew with your first instruction,

so the two white lines cancel each other out and show up as a blacked-out part of the two lines. The two instructions
that you've typed both scroll up in their window by oneline.

@ UCB Logo

overlapping lines
/ cancel each other

]

Welcone to Berkeley Logo wversion 5.1

The turtle turns left

Try This!

Logo for Kids 10 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

Degrees measure turning as part of a circle. If you stand up and face
your computer and then turn all the way around so that you're facing
your computer again, you turned a whole circle. You turned 360 degrees.
If you turn again, but this time only turn halfway around that circle so that
you're facing away from your computer, you turned around for 180 de-
grees, or half of 360. (If you ever hear of a car doing a 180 or doing a
360, this is what they're talking about: it spun halfway around or all the
way around. This is not a safe thing for a car to do!)

Half of 180 is 90, so a simple left turn or right turn to go around a corner
is a 90 degree turn, and that's the kind of turn that you just told your tur-
tle to do.

Let'stell the turtle to take some more steps now that it's facing in a new direction.

* Enter thisinstruction and executeit:
forward 100

Theturtle movestwice as far asit did before. Thistime, it movesto the left, because that's where it was
pointing when you told it to move forward.

¢ forward S0
v left 90

¢ forward 100
7

Logo for Kids 11 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

The turtle moves to the left

Error Messages

So far you've given your turtle two instructions, and it understood both: "forward" and "left." What happens if you
giveit an instruction that it doesn't understand? For example, it doesn't know how to scream. Let's try telling it to.

* Enter thefollowing instruction and then executeit:
scream

Logo puts a message on the screen to answer you:

forward 100

=Crean
don't know how to scream

R

Logo doesn't know how to scream!

This is how Logo tells you that it doesn't understand something. If you had made a mistake when you typed "for-
ward" in your first instruction and typed "forwarg" instead, Logo would have told you "I don't know how to for-
warg." Thisis called an error message. If you ever see one of these error messages when you didn't expect it, dou-
ble-check what you typed to make sure that you typed it perfectly.

What if you told the turtle to turn left, but you didn't tell it how far to turn? Let's see what happens.

* Enter thisinstruction with no number and executeit to see what happens:

| eft

Logo for Kids 12 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

I don't know how to screan
? left

not enough input=s to left
Y

Left? How far left?

It tells you "not enough inputs to left." (The word input refers to information coming into a computer. Input might
come from afile on a disk, or from another computer hooked up to yours by a phone line, or from a microphone that
you're singing into, or from a keyboard that you're typing on.) "Not enough inputs' means that you didn't type
enough on your keyboard for Logo. There were "not enough inputs® to thel ef t command; as we saw before, this
command needs a number after it to tell the turtle how far to turn left. (Another important computer word is output,
which describes information coming out of a computer. It might be coming out onto your monitor screen, or onto
your printer, or out of a speaker attached to your computer, or out over a phone line hooked up to another computer.)
Other computer languages usually call the extra pieces of information that certain commands need to do their job "pa-
rameters,” aterm we learned when we entered our very first instruction to Logo earlier in this chapter.

More Turtle Drawing

Let'stry thel ef t command again. This time, we'll use the special short way to type it that leaves out the second
and third letters: | t .

* Enter thefollowing in the input box and executeit:

It 90

Logo for Kids 13 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

&> UCB Logo

Turning left with the abbreviation for "left"

(Most Logo commands have a special shorter version, so you can do a lot with Logo with just a little typing.) Be-
cause the cursor was pointing to the left when you executed this instruction, a 90 degree left turn now has it pointing
down.

Having the turtle draw white linesis getting boring. Let's tell it to change the color.

* In the next instruction, the phrase " set pen color" is three words, but the Logo command set Pen-
Col or isonly oneword, so the only space you'll type in thisinstruction isthe one between the"r" and
the" 4." Enter thisinstruction and executeit:

set PenCol or 4

As we saw with your first instruction, the case doesn't matter when you type Logo instructions. You
could type " setpencolor” or "SETPENCOLOR" or "SeTpEnCoLoR" and it would still work. With a
lot of computer words that are made up by joining wor ds together, people sometimes write the first let-
ter of all the words after the first one in an upper-case letter to make it easier to read.
(isthiseasiertoread, orlsThisEasier ToRead?) Many computer languages do this all the time, and it's a
good habit to get into, sothat'swhy | doit in this book.

* Draw a line and see how it looks. Like the | ef t command, the f or war d command has a short form
that can save you sometyping: f d.

fd 50

Logo for Kids 14 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

The line shows up red!

& UCB Logo

1t 90
s=etPenColor 4
fd &0

EEEEEN]

Drawing a line with the new pen color

You set the pen color with the set PenCol or command to color number 4, which is the color red. You then en-
tered the f or war d command, but you entered it as f d because it means the same thing to Logo, and saves you
some typing. When the turtle moved forward, it drew ared lineinstead of awhite one.

Later in this chapter, you'll seealist of 16 different color numbers and you'll get to play with them to draw whatever
you like.

Let'sfinish the white and red rectangle.

* Enter and execute the following two instructions:

[t 90
fd 100

Y our rectangle is complete!

Logo for Kids 15 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

&> UCB Logo

fd &0
1t 90
fd 100

The finished rectangle

Picking Up and Putting Down the Pen

Now we're going to draw alittle square. We don't want to draw it right under the rectangle, but 40 turtle steps away
fromit.

So far, the turtle has drawn a line every time it's moved. How can we get it to move without drawing a line? By
telling it to pick the pen up before moving.

* Usethe penUp command to tell the turtle to pick up its pen:
penUp

* If we tell the turtle to turn left again, it will point to the top of the screen. We want it to point down to
the bottom, because the new square will be below the rectangle, so we use theri ght command to tell
theturtleto turn right 90 degrees:

right 90
* Tell it totake 40 turtle stepsin the direction it'sfacing:
fd 40

Logo for Kids 16 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

Thepen isup, so theturtle doesn't draw anything, but the triangle moves down.
* Use the penDown command to put the pen back down so that the next moves draw morelines:
penDown

* Draw a sguar e by repeating the following two instructions four times:
fd 50
ri ght 90
Some programming languages don't let you enter multiple instructions on the same line. L ogo does, so
you don't have to press Enter after each instruction. If you wanted to, instead of entering the two lines
above four times, you could have entered the following single line four times:
fd 50 right 90

Entering the two commands four times drew ared square:

&> UCB Logo

? fd 50

? right 90
? fd 50
v

A red square under the rectangle

Cleaning Up

Logo for Kids 17 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

The hone command sends the turtle back to where it started.

* Enter the following and press Enter:
hore

The turtle jJumps back to the middle of the screen and points to the top of the screen, where it was when you first
started up Logo.

¢ fd &0
? right 90
? home

The turtle returns home

Because the turtle's pen was down when it jumped home, it drew aline asit went.

Thecl ear Scr een command clears away everything on the screen and sends the turtle home.

*

Movetheturtle away from the center of the screen:

fd 50

*

Clear the screen and send the turtle hometo the center with one command.
cl ear Scr een

(For even lesstyping, you could typethe short form of cl ear Scr een: cs.)

Logo for Kids 18 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

All the drawing on the screen is cleared off.

Try This!

Now draw your own picture! Use any of the commands you've learned so
far. Here is a list, along with the short forms you can use if you want to
save some typing:

Command Abbreviation
forward fd
left It
right rt
setPenColor Setpc
penUp pu
penDown pd
(no abbreviation)
home
clearScreen cs
bye (no abbreviation)

The end of the list has one new command that you haven't seen before:
bye. It's like saying "good-bye" to Logo. Enter this instruction when
you're all done with Logo, just like you might click on "Exit" or "Quit" in
another program.

When you want to set the color of your pen, use this chart to figure out
what number to put after the set PenCol or (or set pc) command:

0 black
1 blue
2 green

Logo for Kids 19 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

3 agua

4 red

5 magenta

6 yellow

7 white

8 brown

9 light brown
10 peagreen
11 grayish blue
12 salmon

13 light purple
14 orange

15 gray

Try sending your turtle so far forward that he goes off the screen. What
happens?

Running Someone Else's Program

In the story about Ringo the Robot you programmed Ringo so that he would go to your room whenever you told him
the word "home." We've seen that "home" is already a command in Logo, sending your turtle to the center of the
screen. You can till make up a new command for your turtle by saving alist of instructions using commands that
you know, giving the list a name, and then telling the turtle to execute the whole list of instructions by typing in the
list's name. The list's name will be a new command for Logo. In fact, all computer commands, like Logo's f or -

war d and | ef t and penUp commands, are really running programs. In the next chapter, well learn how to make
up new commands. Before we do, though, let's learn how to run a program that comes with Logo.

* You're going torun a Tic-Tac-Toe game program called " ttt". First, try to start it up even though you
haven't loaded the program by entering this:

ttt

Logotellsyou "I don't know how to ttt." Let'stell it toload thettt program so that it knowswhat the
instructionsthat make up thisprogram are.

* Enter thefollowing instruction toload thet t t program from thecsl s folder (also known asthecsl s
subdirectory):

Logo for Kids 20 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

|l oad "csls/ttt

If you try to name afile that doesn't exist, Logo will tell you " File system error: | can't open that file,"
so make sure to spell the folder and command name exactly as they're shown here, with the slash be-
tween them. (The slash character is on the same key as the question mark.) If you ever get this error
message when trying to open one of your own files, it doesn't always mean that the file you created no
longer exists; it probably means that the name you just typed is dightly different from the name that
you originally gaveto thefile, and that no file with the name you just typed exists.

Also, don't forget the quotation mark before the " c." A quotation mark, which programmers also call
the " double quote," ison the same key asthe apostrophe, or " single quote” :

The key on your keyboard with the quotation mark (or "double quote") and the apostrophe
("single quote")

You'll need to press your Shift key to type a double quote instead of a single quote, just like when you
typean upper-case" A" instead of alower-case" a."

* If your current drawing color isn't white, and you want the tic-tac-toe game to show up in white on the
black background, set the pen color to white before startingup thet tt program:

set PenCol or 7
* Now try thet t t command again.
ttt

Thistime Logo understandsthet t t command, and it startsup atic-tac-toe game:

Logo for Kids 21 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

&> UCB Logo

? zetPenColor 7

T ottt

Do vou want to play first (X)
or second (0)? Type X or O

The tic-tac-toe game starts

* At the bottom of the screen, it tellsyou to type the letter " X" if you want thefirst turn in the tic-tac-toe
game and " O" (the letter, not the number zero) if you want to go second. Type this (don't press Enter,
because the gameis only expecting you to type one key):

X

* Totell it where you want to make your first move, enter the number of the square wher e you want your
X by entering a number from 1t0 9.

Logo for Kids 22 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

The numbers to use when picking your move

* Assoon asyou enter a number to show whereto put your X, thettt gameputsan O in one of the other
squar es and asks you to make your second move. Continue playing until you or thet tt gamewins. (It's
awfully hard to beat it.)

When you're done with your first tic-tac-toe game, you have three choices:

* Youcanenterttt toplay another game.

* You can enter "bye" to tell Logo that you're done with it for now. The Logo window will close up.

* You can use the other commands you've learned to keep on drawing. Thet tt game turned off the triangle that
shows where the turtle is, but you can turn it back on with the showTur t | e command. Even if you don't enter
this command, al of the drawing commands you've learned will still work.

In the next chapter, you'll learn how to create and run your own programs just liket t t . Yourswill start off smpler,
but you'll learn how to add more and more to them until you can create your own games!

What We Learned

In this chapter, we learned:

* What programming is.

* What aprogramming languageis.

* What alLogo interpreter is.

* How to start Berkeley Logo.

» How to giveinstructions to the Logo turtle to make it move around and draw lines.
» How to change the color that the turtle usesto draw.

» What happens when you enter a command that Logo doesn't understand.

» How totell the turtle to pick up and put down the pen.

* How to clear the screen and send the turtle home to the middle of the screen.

» How toload and run the tic-tac-toe program that comes with Berkeley Logo.

Logo for Kids 23 copyright 2002 Bob DuCharme

Chapter 1. Robots, Commands, and Turtles

» How to quit out of the Berkeley Logo program.

Don't forget about the glossary in the back of this book. If you see a computer word and you forgot what it means,
it's probably explained in the glossary.

New Commands in this Chapter
(See the "Procedures Reference” Appendix in the back of the book for brief descriptions of what these do.)

* bye

 clearScreen

 forward
* hone

o left

* penUp

* right

 set PenCol or

More Things to Try

1. List somewaysthat your Logo turtleislike Ringo the Robot. How isit different?
2. Haveyour turtle draw a green square that's 100 turtle steps high and 100 turtle steps wide.

3. Do you know how many turtle steps high your screen is? How wide it is? What would be a good way to find
out?

4. You'veaready drawn arectangle and some squares with the turtle. Can you draw atriangle? How about a star?

Logo for Kids 24 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Writing and Running Programs

Programmers hate typing. We saw in the last chapter that commands like "forward" and "clearScreen" have abbrevi-
ations such as"fd" and "cs" that et you enter those commands with less typing.

Programmers especially hate typing the same thing over and over. Computers are supposed to be good at doing the
same thing and over; why should you type "fd 50" and "right 90" four times to make a square? There should be a
way to say "do these two instructions four times," and thereis: loops.

Loops

You can tell Logo to repeat one or more instructions over and over by using ther epeat command. After the r e-
peat command, enter the number of times to repeat the instructions. Then, between a pair of square brackets, put
thelist of instructions to repeat. Let'stry it.

First make sure that your screen isclear and that your turtleis at the center of the screen pointing up.
Enter the abbreviation for thecl ear Scr een command:

CSs

If you can't see the turtle'striangle becausethettt program hid it with the hi deTurt| e command,
tell Logo to show it with theshowTur t | e command:

showTurtl e

* We want to draw a squar e the same size as the one you drew in the last chapter, but without typing " fd
50" and "right 90" four times. You could do it by typing just one line, but note how this line has two
charactersthat you've never typed before: the square bracket characters ([and]) are probably on the
right side of your computer keyboard near the " P" key. (Programmers often use the word character to
describe a particular letter, number, or punctuation mark.) Enter the following instruction and execute
it:

repeat 4 [fd 50 right 90]

Logo for Kids 25 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

c=
repeat 4 [fd 50 right 90]

?
?
?
?

Drawing a square with a loop

Y ou drew a square by entering oneline! ("Code" is how programmers refer to the instructions they type.

Programmers use the word loop to describe alist of instructions that get repeated, because the computer executes the
instructions from the beginning of the list to the end and then loops back to the beginning. Instead of square brack-
ets, some programming languages use other ways to show the beginning and end of the list of instructions to repeat.
For example, some use curly braces ({ and }) and some use the words "begin" and "end."

After executing
the short list of
instructions,

-
repeat 4 [fd 50 right 90]

‘\/Logo loops back to the

beginning of the list.

Logo for Kids 26 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Repeating a loop's instructions

Let'stry another loop. Thistime we'll draw an octagon, a shape with eight sides.

* Enter thefollowing and executeit:

repeat 8 [fd 60 right 45]

> UCB Logo

c=
repeat 4 [fd 50 right 90]
repeat 8 [fd 60 right 45]

Drawing an octagon with aloop

If you livein the United States, can you think of aroad sign that has this shape?

Try This!

What other shapes can you draw with a loop? Can you make a star? Try
changing all three numbers in the instruction to different numbers and
see what the turtle draws. Use the cl ear Scr een (cs) command if your
screen gets messy.

Logo for Kids 27 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

What kind of instructions can you put inside of aloop? Almost any—even another loop! To draw a square, you just
used a loop to execute the same two instructions four times. Let's put that whole thing inside of another loop that re-
peats five times, so that your turtle draws five squares.

* Clear the screen and send theturtle home:
cs
* Enter and execute the following instruction.

repeat 5 [repeat 4 [fd 30 rt 90] penUp fd 40 penDown]

ThistellsLogo to do the following four stepsfive times:

1. Draw asquare. (This step is actually two steps repeated four times: fd 30 andrt 90. But, just
like it was one instruction when you executed it before, it's just one step of what's going on five
times in the bigger loop.) The square is a little smaller than the last square you told the turtle to
draw because we want to fit five of them on the screen.

2. Pick the pen up.

3. Move forward 40 turtle steps. Because the square is 30 turtle steps high, this moves a little above
the top of the squarethat just got drawn.

4. Put the pen back down so that the next move draws a line. Because L ogo will loop back to the be-
ginning of the list that gets repeated, that next move will be the beginning of the drawing of the
next square.

You can tell which instructions get repeated five times because they're the onesinside the pair of square
bracketsthat comeright after the"5."

repeat 5 [repeat 4 [fd 30 rt 90] penlUp fd 40 penDown]
1. p 3. 4.

The four steps that this instruction repeats five times

Logo draws five squares, with each new one above the previous one. Y our turtle moved so high up that it may have
gone alittle bit off the screen:

Logo for Kids 28 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

EEEEEEEE]

cs
repeat 5§ [repsat 4 [fd 30 rt 90] penlUp fd 40 penDown]

Drawing five squares using a loop inside of a loop

That was a pretty complicated instruction. It was probably hard to read it and understand what it was doing when
you first saw it. If we split it up onto many lines, so that each individual step is written on its own ling, it's easier to
read. Thisishow programmers usually write complicated instructions like this. They also indent, or add white space
before certain instructions to move them over. This way, the lines that go together are grouped together when you
look at them (you don't have to type this):

repeat 5 |
repeat 4 |

fd 30

: rt 90

penUp
fd 40
penDown

]

When the instruction to draw five squares is written this way, the two steps that draw a single square (f d 30 and
rt 90) are indented the most, and the four steps that set up the turtle to draw each of the five squares are also in-
dented the same amount.

If you did type in the instruction like that, a tilde symbol (which looks like ~ and whose name is pronounced as "till-
duh™) shows up on each line after the first line because Logo is waiting for you to finish the instruction.

Logo for Kids 29 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

rrrorororor ot

Using multiple lines to enter the instruction

Why does it put the tilde there instead of a question mark? In other words, how does it know that you're not done?
Because square braces always work in pairs, so after you enter a left square brace ([) it knows that you're not done
until you enter the right square brace (]) that goes with it. Each right square brace goes with the last |eft square
brace that needs a partner. Because of this, Logo knows that the] right after "rt 90" isn't the end of the entire in-
struction; it's the one that goes with the [from just before the "fd 30" instruction. When that last] gets entered, all
the brace pairs that got started have been finished, and L ogo executes the instruction.

repeat 5 @
repeat 4
fd 30 _
m/rijg/!;}"b‘“}z‘éi‘!
penUp cpter o
fd 40
penbDown

1]

Square braces always come in pairs

Logo for Kids 30 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Try This!

If you haven't already, send the turtle home, clear the screen, and try the
new way to enter the instruction that draws five boxes.

Making Words Appear

When you do fancier things with Logo, it gets to be more and more typing. In our story about Ringo the Robot, what
did you do when you got tired of telling Ringo a long list of instructions to send him from the living room to your
bedroom? Y ou programmed him. You told him alist of instructions to perform when he heard the special word that
you picked to be the name of that list of instructions—in other words, when he heard the name of the program, he
executed the program. The name of the program became a new part of Ringo's language.

In the last chapter, when you told Logo to scream, Logo replied that it didn't know how to scream. Now we're going
to teach it how to scream. First, we'll learn a new command that makes words and numbers appear in the same
scrolling text area where you've seen the instructions and Logo messages appear.

Enter and execute thisinstruction. It uses the same square brackets that you used to show where a list
of loop instructions began and ended, becauseit'salist of two wordsto put on the screen.

print [hi there]

? print [hi there]
hi there
7

Telling Logo to display words on the screen

Logo for Kids 31 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Print? But It's Not Printing!

Why is this command called "print" if the words you tell it to print show up
on the screen instead of on the printer? Because when Logo was first in-
vented, this command did send the part between the square brackets to
a printer.

In the last chapter we learned that a long time ago, computers didn't
have monitors (the part of your computer that looks like a TV set). They
just had a keyboard and a printer with a roll of paper. When you typed in-
structions, and when Logo answered your instructions, the printer printed
each instruction and response on the roll of paper. Then it unrolled, or
"scrolled up," the paper just enough to leave room for the next line that it
would print. If you entered print [hi there] on a computer with
Logo thirty years ago, it would have sent the words "hi there" to the
printer.

Because monitors have replaced printers for showing instructions and
the result of those instructions, the pri nt command sends the words to
the computer screen instead. Sometimes we say that it prints the words
on the screen, even though it's not really printing with paper and ink.

* Let'stell Logo to show morewords. Enter and execute the following instruction:

print [I am Logo. Your wi sh is ny conmand.]

? print [hi theres]
hi there
? print [I am Logo. Your wizsh i= my command.]

I am Logo. Your wish i= my command.
?

Printing a longer message on the screen

Logo for Kids 32 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Try This!

Tell Logo to print some more words on the screen. Remember to sur-
round the words with the square brackets.

Your First Program

Let's teach Logo to scream. You'll do this by telling it "Logo, in order to scream, print [Aacaacacsaaceeeceeeee].
That's the end of my instructions.” Thisway, you'll be telling Logo how to scream in its own language.

WEell, to be honest, not al of that isin Logo's language. WEe'll leave out the parts that Logo doesn't understand, which
means |ess typing for you to do.

Enter thefollowing threelinesand press Enter after each one:

to scream

print [Aaaaaaaaaaaeeeeeee!]
end

(You can make the scream longer if you want, but make surethat the wholeinstruction fitson oneline.)

Logo knows that the word t o starts the definition of a new program, and it knows that every line that you enter after
that is part of the program until you enter the word end. Until you reach the end, Logo displays the prompt as a
greater-than sign (>) to show you that it's not waiting for a single instruction that it will execute for you, like it does
with the question mark prompt. It's waiting for you to enter end to show it that you're done entering your new pro-

gram. When you reach the end line and press Enter, Logo should tell you that you've defined a new word in its
language: scr eam

? print [hi there]

hi there

? print [I am Logo. Your wish is my command.]
I amn Logo. Your wish i= ny command .

? to =crean

> print [Ahassasasasacessess!]

» end

screan defined

r

Logo for Kids 33 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Defining a new word for Logo

Now tell it to scream! (If it didn't work and you want to try again, you can't call it scream again unless you first enter
bye to quit out of Logo and then start up Logo again. Instead, pick anew namelikescr eaml or scr ean®.)

* Enter your new command:
scream
Logo runsthe scr eamcommand.

Congratulations! You just wrote and ran your first program! A program is usually a group of instructions, and this
had only one (pri nt) but it's still a program. Soon you'll write longer, more complex programs that are just as easy
to run.

You'll also write programs that do things with the turtle. This program didn't, but one of your next programs will
have the turtle draw a whole flower when you enter the new command f | ower that you are going to teach to Logo.

Try This!

Create a new program called si ng that prints "la la la la Ia" on the
screen.

Creating Programs with a Text Editor

What if you want to add more instructions to your scr eamprogram or change what its pr i nt command sends to
the screen? You can't do this by entering t 0 screamat the question mark prompt again; Logo will tell you
"scream aready defined.” If you really want control over your program, you can write it with atext editor, which is
what professional programmers do.

A text editor isaprogram that lets you edit text files. What's atext file? It's afile that's not a binary file. What's a bi-
nary file? A binary (pronounced "bye-nurry”) file is usually arranged in a special way so that only certain programs
that know about that arrangement know how to read that file off of a computer's disk and do something with it. Pic-
tures and music are almost always stored in binary files.

A text file is usualy made up of letters, numbers, and symbols that you type on your keyboard. Text files can be
read by al kinds of programs on all kinds of computers. Unlike most binary files, a text file from one computer can
easily be moved to another computer and used there, even if the computer is running a different operating system.

When we write computer programs, we store them in text files, so to create and edit them you use a text editor pro-

Logo for Kids 34 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

gram. There are many text editors out there, and many have special features that help programmers do their work
more easily. Berkeley Logo comes with an editor called Jove. The name stands for Johnathan's Own Version of
Emacs (Emacs is another text editor—my favorite one), and Jove is also another name for Jupiter, the god of the sky
in ancient Roman mythology. On your computer, Berkeley Logo may be set up to use a different editor—probably
the Notepad text editor if you're using Windows, something called "Logo Editor" on the Macintosh, or XEmacs
(pronounced "ex-ee-max") if you're using Linux. Ask the person who set up Logo on your computer.

We're going to create a new command called f | ower in atext file with the namef | ower . | ogo.

* Theedi t Fi | e command tellsLogoto start up thetext editing program. The part you put after edi t -
Fi | e is the name of the file you want to edit. (Don't forget the double quote before the word so that
Logo knows that it's the name of the file you want to edit and not the name of a special command to go
with theedi t Fi | e command.) The period (.) and the part after it in the filename is known as the ex-
tension. Not all files need an extension, but when you add " .logo" it shows that thisfile hasa L ogo pro-
gram in it. Other programming languages have a similar habit: Java filesusually end in " java", C files

n".c',C++filesin " .cpp", and Perl program filenamesin " pl". (Asyou can tell from the C++ and Per|
examples, sometimes the filename extensions ar e abbreviated ver sions of the program language name.)

Enter thefollowing instruction at Logo's question mark prompt and executeit.
editFile "flower.|ogo

Logo starts up the editing program in its own window on your computer. (If the editing program asks
you " Cannot find the flower .logo file. Do you want to create a new file?" pick " Yes' asyour answer.)

* Enter the following three lines. If you've ever used a text editor or word processor program to typein
stories, reports, or e-mail, this should be easy. Use your Enter or Return key at the end of each lineto
start typing on a new line below the cursor's current line. Use your cursor keysto move the cursor up,
down, left, or right if you need to fix a problem in something you already typed.

The spaces at the beginning of of the second line won't change how the program works, but when you
use spaces to indent the lines of a program in between the lines between the first and last lines, the
spaces will makeit easier to read the program. (OK, maybe it doesn't make this program easier to read,
but it will when the programs get longer.)

to fl owner
gr ow
end

You should recognize most of what you've written: t o tells Logo that you're starting a new program
named after the next word (" flower"), end shows wher e the program ends, and the part in between (for
this program, just oneword) isthe body of the program.

* For now, you're finished typing the first version of your f| ower program. Save what you typed and
quit out of the editor program. If you're not using a Macintosh, save your work by picking Save from
the File menu and then pick Exit from the same menu to return to the Logo question mark prompt. On
the Macintosh, picking Accept Editor Changes from the Edit Menu saves your work and returnsyou
to the Logo question mark prompt.

Logo for Kids 35 copyright 2002 Bob DuCharme

*

Chapter 2. Writing and Running Programs

Enter and execute the following at the L ogo question mark prompt to run your new program:
fl ower

L ogo executes the program, but doesn't know what to do with the gr ow part.

? editFile "flower
? flower
I dom't know how to grow in flower

[grow]
!

Logo finds an error in your program

Now you know what Logo does when it finds something in a program that it doesn't understand: it dis-
playsan error message about the lineit doesn't under stand so that you know what to go back and fix.

Let's edit the program, take out the part that Logo doesn't under stand, and replace it with something it
does understand. Tell Logo again that you want to edit thef | ower . | ogo file.

editFile "flower.| ogo

Useyour cursor keysto moveyour cursor after theword gr owand then usethe Backspace key (or, on
a Macintosh, the delete key) to delete the lettersin theword " grow."

Add the three new lines shown in the darker, boldface text below between thet o f| ower lineand the
end line of your program:

to flower

cl ear Scr een

set PenCol or 6

repeat 3 [forward 35 right 120]
end

This program hasthreeinstructions. Thecl ear Scr een command clear s the screen and sendsthe tur-
tleto the middle, aswe've seen before. set PenCol or here setsthe drawing color to color number 6 for
yellow. The third step draws a triangle by moving forward 35 turtle steps, turning to the right 120 de-
grees, and repeating these two stepsfor atotal of threetimes.

Note that | didn't use abbreviations for any of the procedure names in this program. For example, |
wrote f or war d instead of f d. Thisis because programs should be as easy to read as possible. |f some-
onewho had just learned L ogo had to add something to a program that someone else wrote with a lot of

Logo for Kids 36 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

abbreviationsin it, the programmer adding the new partswould have a harder time figuring out what it
did.

* Saveyour fileagain and exit out of the text editor program.

* Try your program again by entering the following at the L ogo question mark prompt:
fl ower
The screen clears, and theturtle draws alittle yellow triangle.

* If it doesn't draw the triangle you expected, edit the f | ower . | ogo program file again with the same
instruction that you used before.

editFile "flower. |l ogo

Carefully compare your file with what you see in this book. See if you can find the problem and fix it,
then save thefile and try executing the program again.

Don't get frustrated if your program doesn't work correctly the first time and you have to go back and
change one or two little things to make it run the way you want it to. This happensto the best program-
mers every day, and will happen to you as you type more programs in this book. Then you'll find your
mistakes, which will belittle, then fix them, and your programswill run great!

The flower program starts by drawing a yellow triangle

It's not much of a flower, but as with al programs, it's best to start simple, get it to work, and then build on what

Logo for Kids 37 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

works. We're going to tell the turtle to make a flower by making a triangle, then turning to the right 15 degrees, then
making another triangle, then turning right 15 more degrees, then making a third triangle, and so on. It will repeat
these steps until the turtle goes all the way around in a complete circle, making atotal of 24 triangles.

Edit your f 1 ower program again and add the boldface text that you see below. Make sure that the
fourth line hastwo left square braces ([) and two right square braces (]) as shown above. It will make a
trianglelikeit did before, turn right 15 degrees, and repeat these two stepsfor atotal of 24 triangles.

to fl owner

cl ear Scr een

set PenCol or 6

(rjepeat 24 [repeat 3 [forward 35 right 120] right 15]
en

Save your program, exit out of thetext editor, and execute your program the same way you did before.

&> UCB Logo

W=lcone to Berkeley Logo wersion 5.1
¢ editFile "flower

¢ flower

?

24 triangles in a circle make a flower

Now it looks a little more like a flower blossom. Let's add a stem and leaves under this blossom to make it look like
awhole flower.

* Add the bold lines that you see below. The only new command is back, which isjust likef or war d, ex-

cept that it tellsthe turtle to move backwards. If the pen isdown, it will draw just like it does when the
turtle movesforward.

Logo for Kids 38 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

to fl owner
cl ear Scr een
set PenCol or 6
repeat 24 [repeat 3 [forward 35 right 120] right 15]
home
set PenCol or 2
back 140
| eft 45
forward 70
left 10
back 60
right 110
forward 60
left 10
back 71
| eft 45
forward 140
end

Now, after the turtle makes the blossom part of the flower with 24 yellow triangles, it will go to its
"home" in the middle of the screen, set the pen color to green (color number 2), and then do the lines
and turnsthat draw the stem and leaves.

* Compare what you typed with what you see printed in this book to make surethat you copied it exactly.
Save your f | ower program, quit the editor, and run your program again. You should see a green and
yellow flower appear. If not, edit the f | ower . | ogo file again and see which line or lines need to be
changed.

&> UCB Logo

¢ editFile "flower
¢ flower
7

Logo for Kids 39 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

The flower drawn by your program

Try This!

What would you change to have the turtle draw the blossom part in
a different color? What would you change to make the blossom part
bigger? (Hint: you want the turtle to draw bigger triangles.)

Making the Program Easier to Read

All thisl eft forward | eft back right forward intheprogram makes sense to the turtle, but it's hard
for people to read. It's important to make a program as easy as possible to read so that if someone needs to change it
they'll know more easily which part they need to change.

There are two ways to make a program easier to read. All serious programming languages let you do both of these:

» White space. You indented the lines between the first line and the last line with a couple of spaces from your
space bar. We call these spaces white space, because if you printed out the program with a regular printer there
would be no printing there. Y ou can also add white space by putting blank lines between the different sections of
the program with your Enter key so that it's easier to see where each section starts and ends.

» Comments. Most programming languages give you a way to tell the computer "don't pay attention to what |
wrote in this part here." This way, you can put a note in that part that explains what's going on to any person
reading the program. That person could be you—all programmers have pulled out programs that they wrote a
long time ago, tried to read them, and then thought "Why did | do this here in this part? What was | thinking?"
That's when they see that if they had put more comments in, they would have an easier time understanding what
they did.

In Logo, a semicolon character (; , pronounced "sem-ee-coe-lin") starts off comments.

* Enter thefollowing at the L ogo question mark prompt and press Enter:
;. grow

Nothing happens. We saw earlier that Logo doesn't understand gr ow, but because of the semicolon at
the start of the command that you just typed, L ogo has no problem with it.

Logo for Kids 40 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

* Enter and execute thisinstruction:
forward 150 ; grow

The turtle moves ahead forward 150 turtle steps and that's it. Logo saw the instruction and the semi-
colon and knew that it should only execute everything before the semicolon. This means that you can
put comments on the same line as an instruction that Logo should execute, as long as those comments
come after a semicolon.

* Edit your program to look like the one shown below. On the second line, put your own name and to-
day's dateinstead of what you see here.

; flower.logo
Bob DuCharne Cctober 1, 2002
; Draw a flower with the turtle.

to fl ower

; Set up the screen and turtle to get themready.
cl ear Scr een
set PenCol or 6 ; Set the pen to draw yellow |ines.

; Draw the bl ossomat the top of the flower.
repeat 24 [repeat 3 [forward 55 right 120] right 15]

; Draw the stem

hore

set PenCol or 2 ; The rest of the drawing will be green.
back 140

; Draw the |left |eaf.
| eft 45

forward 70

left 10

back 60

; Draw the right |eaf.
right 110

forward 60

left 10

back 71

left 45

forward 140 : One nore line for the stem
end

* Thefirst threelines are a good way to start off any program file that you create for any program that
you writein any language: comments showing the name of the file, the program's author, the date he or
shewroteit, and a summary of what the program does. If you always remember to do this, then you'll
be more professional than a lot of professional programmers out there—too many of them forget this

Logo for Kids 41 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

simple step.

Save your edited program, quit out of the text editor program, and run the flower program again to see
if thereareany problems. It should run the same way.

Source Code

In the last chapter, you loaded the ttt program and played a game of tic-tac-toe. Someone could load your
f I ower program and run it if its program file was on their computer, as long as they had a Logo interpreter. If that
person knew how to load f | ower . | ogo, they could run the f | ower procedure without needing to know f or -
war d or set PenCol or or any of the other commands that you used when you wrote the program. Y ou're the pro-
grammer, and they'd be using your program just like you've used other programs written by other programmers.

Try This!

Have someone else come over to the computer, enter the instruction
f 1 ower atthe ? prompt, and press Enter. Tell them that they're running
the program that you wrote.

This person is your program's user. When programmers talk about
users, they're talking about the people they're creating the program for.
Programmers are supposed to think a lot about their users and how their
users expect the program to act. That's why a program designed for kids
will look different from a program designed for adults, and why a program
designed for musicians will look different from a program designed for
business people.

Now that you're a programmer, you can look at other Logo programs and learn from them. Just as you edited your
f 1 ower program by bringing it up in atext editing program, you can bring up programs written by other peoplein
your text editor and take alook at them.

* Usetheedi t Fi | e command to edit thettt program. Remember that it'sin a subdirectory, or folder,
called csl s. (Also, not that " ttt" isthe whole name of thisprogram in the csl s folder—it doesn't have
a".logo" filename extension.)

editFile "csls/ttt

Logo for Kids 42 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

& TTT - Hotepad M=l B
File Edit Search Help
:; Duerall orchestration

to ttt

local [me you position]

draw._board

init

if equalp :me "x [meplay 5]

forever [

if already.wonp :me [print [I wint] stop]

if tiedp [print [Tie gamet] stop]

youplay getmove ;5 ask person fFor move
if already.wonp :you [print [You wint] stop]

if tiedp [print [Tie game?] stop]

meplay pickmove make.triples ;: compute program's move

1

end

to make.triples
output map "substitute.triple [123 456 789 147 258 369 159 357]
end

to substitute.triple :combination
output map [item ? :zposition] :combination
end

to already.wonp :player
output memberp {word :zplayer :player :=player) {make.triples)
end

to tiedp
output not reduce “or map.se “numberp arraytolist :position
end

[« A7

Looking at the ttt program with a text editor

* Thettt program islong enough that it doesn't fit on the screen all at once. Use the Page Down key
(which might be called PageDn or PgDn) to move down to more text in the file and PageUp to move

back up.

You can seethat the program starts with thewordst o ttt just asyour f| ower program startswith
to flower.Italsoendswith theword end. It has moreinstructions after the end line, in groups that
start with t 0 and end with end. These procedures arelikelittle helper programsthat help thettt pro-
gram. (For example, themainttt procedure hasmake. tri pl es in it, and the second procedure be-
ginswitht o make.tripl es.

* Seeif you can find these wordsin thettt program: penup, f or war d, and penDown. Do you see any
squar e brackets? How about comments? Does it have indenting anywher e?

* When you're done looking at thet tt program, you can exit out of the editor without saving first be-
cause you'rejust looking at it, not editing it. If you accidentally typed in even a single character some-
where, your editing program might ask if you're sure that you want to quit or if you want to save your
changesfirst. You are surethat you want to quit, and you don't want to save your accidental changes.

Y ou used the text editor to look at the source code of thet tt program. The source code is the file full of text that

Logo for Kids 43 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

someone typed out as instructions to the computer when they wanted to write a program for people to run. That's
why, when you spend some time writing a program's instructions, you can tell people that you were "coding" and
you'll betalking like areal programmer.

Try This!

The csl s folder also has programs named pl ot, poker, and t ower .
Take a look at them with your text editor the same way you looked at
ttt.

Variables

Imagine that you have an envelope with the word "FLAVOR" written on it. One day, you write the word "CHOCO-
LATE" on allittle piece of paper and put it inside the envelope. Y ou walk into an ice cream store and say "I would
like an ice cream cone, please." The lady behind the counter asks "what kind of ice cream?' and you hand her the
envelope. She sees the word "FLAVOR" on the front, looks inside the envelope, takes out the paper, and sees that it
says "CHOCOLATE." She gives you the envelope back, and makes you a chocolate ice cream cone.

The next day, you write the word "VANILLA" on another piece of paper and put it in the same envelope. You go
into the same store and the lady behind the counter says "oh great, it's the kid with the envelope." While you hand it
to her, you say "ice cream cone, please!" She looks inside, reads the new piece of paper, gives you back the enve-
lope, and makes you a vanillaice cream cone.

The envelope is a container for some information, and this container has a name. The name of this envelope, "FLA-
VOR," describes the information inside. (If the envelope had said "ZX30L2" on the front when you handed it to the
lady behind the counter, she probably would have said "Hey, what's your problem! Take your envelope and get out
of my store!™) The information inside the container can change; one day the FLAVOR container stores the informa-
tion "CHOCOLATE" and another day it stores the information "VANILLA."

All programming languages have something called variables (pronounced "vair-ee-uh-bulls") that are containers for
information. Programs can pass them around from one instruction to another, just like you handed the envelope to
the ice cream lady. Programs can look inside the variables to see what information they store, and they can change
the information inside. It's very common for computer programs to spend much of their time looking inside of vari-
ables, checking the information, and then doing different things depending on what they found there. It's very simi-
lar to what the ice cream lady did when she looked inside the FLAVOR envelope and then gave you one ice cream
flavor or another depending on what she found there.

In Logo, the command to make a variable is make. (In other programming languages, creating a new variable is
usually called declaring avariable.)

* Enter the following instruction to make a variable named f | avor . Don't forget the double quote char-

Logo for Kids 44 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

acter beforethevariablenamef | avor and beforethe valuethat you're putting into that variable.

make "fl avor "chocol ate

In other programming languages, just like in English, a double quote goes at the beginning and end of
theword or words being quoted, " like this* (or likethis: " chocolate"). In Logo, you put one before each
word that you want to treat like a little piece of data, or information for the computer, but not after. Re-
member to put each piece of data right after the double quote, or L ogo will give you an error message.

Watch out for this when you type in your programs and get errors when you try to run them, because
thisisa common source of errors.

* Tell Logo to print theinformation stored in thef | avor variable. Thet hi ng operation isa way of say-
ing " the thing called flavor."

print thing "flavor

Logo tells you what information is stored inside the f | avor container—what we call the value of the
variable.

Asyou learn various programming languages and decide what you like and don't like about each, you'll
sometimes find your self thinking " whoever designed this language sure picked a great name for that"
or "they surepicked a stupid namethere!" Thenamet hi ng may inspire one of these responses.

Luckily, because programs check the values of variables so often, Logo provides a shortcut: the colon
(:) character. It'slocated on the key next to your L key, and you'll have to pressthe Shift key with it if
you don't want to type the semicolon (;) character instead. Try thisinstruction at your question mark.
It should give you the sameresult asthe previousinstruction:

print :flavor

Thecolon isareplacement for theword "thing" and the double quotethat followsit. It's so much easier
to type the colon that wewon't use theword " thing" again for checking variables.

? make "flavor "chocolate
? print thing "flavor
chocolate

Printing out the value of the flavor variable

* Now changethe value of the variable with thisinstruction:

make "flavor "vanilla

Logo for Kids 45 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

* Usethesamepri nt instruction that you used beforeto find out the variable's value.
* Try thesetwo instructions. See if you can guess what will happen befor e you execute the second one.

make "box "fl avor
print :box

Thisiskind of like putting a piece of paper that says " flavor" on it (not an envelope that says " flavor"
on it) into an envelope that says "box" on it. The box variable doesn't know that you had created an-
other variablenamed f | avor ; it just knowsthat you put thevalue " flavor" intothe box variable.

flavor

box

Storing the value "flavor" in the box envelope

* Now try these two instructions. They're the same as the last two, except that you're not putting the dou-
ble quote beforethenamef | avor .

make "box :flavor
print :box

Thistime, you'retelling Logo to put the value of thef | avor variable inside of the box variable, which
iswhy box now hasthevalue" vanilla" in it.

Logo for Kids 46 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

| vanilla |

box

Storing a copy of the value in flavor ("vanilla") in the box envelope

Now that box hasthevalue" vanilla,"” what isthe value of thef | avor variable?

print :flavor

It still has the value " vanilla." When you created the box variable, you told Logo to put a copy of the
fl avor variableinit. It did, and it didn't change the value of thef | avor variable.

? make "flavor "chocolate
? print thing "flavor
chocolate

? print flavor

chooolate

? malke "flavor "wanilla

? print flavor

wanilla

? malke "box "flawor

? print bo=

flawvaor

? malke "box :flawor

? print box

wanilla

? print flavor

wanilla

2

Copying variable values to other variables

Don't worry too much about copying variablesto other variables. Thiswas just an example of the more
interesting things that you can do with variables.

Logo for Kids 47 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

* Variables can also store numbers, and you don't need to put the double quote character before the num-
ber value. Try the following instruction to create a variable called gr een, and then check the variable's
valuewith thepri nt command.
make "green 2

* What if you print the value of a variable that doesn't exist? You never created a col or variable, sotry
this:

print :color

You never assigned any valueto acol or variable, which iswhat L ogo tells you.

Try This!

Try setting the f| avor variable to other values and then checking to
make sure that the values you put there are really there.

Can you make up a new variable different from f | avor and then change
its value a few times? (Make sure that it has no spaces in its name.)

There's one more thing about the t hi ng thing: once we learned it, we learned about using the colon (:) abbrevia-
tion so that we wouldn't have type out the procedure name "thing." Unlike other procedure names that we've learned
such asf orward, pri nt, and make, t hi ng is not a command. If the f | avor attribute had the value "vanilla"
and you typed this at the question mark prompt,

thing "flavor

Logo would tell you "Y ou don't say what to do with vanilla.," Because t hi ng is an operation, and not a command,
it outputs a value to get used by a command or by another operation. If you type the instruction above, Logo does
know that it should look inthe f | avor variable and pull out its value, but then it wants to output it to a command
that will do something with it, and this instruction doesn't have one. That's why it says "You don't say what to do
with vanilla" (In other programming languages, instead of calling this an operation that outputs a value, we usually
call it afunction that returns avalue.) If you enter this,

print thing "flavor

you are giving t hi ng a command to output to: pri nt. The pri nt command knows what to do with it; it puts it
on the screen. The important thing to remember is that of the various special words you learn to use in Logo, some
are commands and some are operations. Commands tell Logo to do something, and operations output a value to be
used by something else—usually by a command, but sometimes by another operation. (If it's used by another opera-
tion, there has to be a command somewhere in the instruction using the result of all this outputting.) In the next
chapter, we'll learn about some very handy operations to combine with the commands that you've already learned.

Logo for Kids 48 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

Procedures? Commands? Operations?

Nearly all of the special words that mean something in Logo are proce-
dure ("pro-seed-jer") names. There are two kinds of procedures: com-
mands and operations. Logo comes with its own built-in procedures (for
example, commands such as f or war d and pri nt and operations such
as t hi ng and more that we'll learn shortly) and you can write your own
new ones. You've already written two command procedures: scr eam
and f | ower .

Let'sedit your f | ower program to use variables.

* Bring up your f | ower program in the text editor.
editFile "flower.logo

* Add the four linesthat you seein bold below that begin with the word " make" to your program, along
with the comment line above them. For the two set PenCol or linesthat you wrote earlier, delete the
number after each command and put the name of the color variable (along with the colon before it)
thereinstead.

; flower.logo
; (your name here) (today's date here)
; Draw a flower with the turtle.

to fl owner

; Set col or val ues.
make "red 4

make "blue 1

make "yell ow 6
nmake "green 2

; Set up the screen and turtle to get themready.
cl ear Scr een
set PenCol or :yellow ; Set the pen to draw yellow |ines.

; Draw the bl ossomat the top of the flower.
repeat 24 [repeat 3 [forward 55 right 120] right 15]

. Draw the stem

hone
set PenCol or :green ; The rest of the drawing will be green.

Logo for Kids 49 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

back 140

: Draw the left |eaf.

| eft 45

forward 70

left 10

back 60

; Draw the right |eaf.

right 110

forward 60

left 10

back 71

| eft 45

forward 140 ; One nore line for the stem
end

* Save your new version of the f | ower program, quit out of the text editor, and run your flower pro-
gram. It should run exactly asit did before.

* Bring up your f | ower program in thetext editor again and change thelinethat says
set PenCol or :yell ow
to say this:
set PenCol or :red

* Save the program, exit out of thetext editor, and run the program to see what happens.

See how variables can make a program easier to read? In fact, once you changed the line that said this

set PenCol or 6 ; Set the pen to draw yellow |ines.
to this,
set PenCol or :yellow ; Set the pen to draw yellow |ines.

you don't even need the comment that says " Set the pen to draw yellow lines" anymore.

The program is not only easier to read, but easier to write. For example, imagine that you were going to have your
turtle draw a sun above your flower. When you can write set PenCol or yel | owin your program, you don't
have to remember which number was the number for yellow.

Variables do much more than make programs easier to read and write. They make a program more flexible, because
they let asingle program do alot more different things. (That's why we played alittle with copying a value from one
value to another.) In the next chapter, we'll write a program that uses variables to create a math game for your com-
puter. If you don't like math, remember: you can make the game as easy or as hard as you want.

Logo for Kids 50 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

What We Learned

In this chapter, we learned:

» How to create loops, which tell Logo to repeat some instructions more than once.
» How towrite aprogram and run it.
» How to use atext editor to create new programs and to edit existing programs.

* Why white space at the beginning of some lines of your program and between other lines can make a program
easier to read and understand.

» What comments are and why they make a program easier to understand.
* How to make words appear on the screen with the pri nt command.
» How tolook at other Logo programs that come with Berkeley Logo.

» How to create variables, how to put information into them, how to check their values, and how to copy their val-
ues to other valuables.

New Commands and Operations in This Chapter

(See the "Procedures Reference” Appendix in the back of the book for brief descriptions of what these do.)

New Commands

* back
e editFile
e end

e hideTurtle

* nake
e print
* repeat

Logo for Kids 51 copyright 2002 Bob DuCharme

Chapter 2. Writing and Running Programs

showTurtl e

to

New Operations

t hi ng

More Things to Try

Use your text editor to write a program caled bi gBl ueSquar e that clears the screen and then draws a big
blue square. If you find yourself typing the same instruction over and over in your program, remember: com-
puters are there to do repetitive jobs for you! Use aloop instead.

Also remember to include commentsin your bi gBl ueSquar e program.

After you write and run bi gBl ueSquar e, edit it to add two new instructions and then run it again:

* Oneinstruction at the beginning creates a variable called message with the value "what a great square!”

e Onejust before the end instruction that displays the value of the nessage variable with the pri nt in-
struction after the turtle draws the square.

Change the value of the nessage variable to something else and see if that message shows up when you run
the bi gBl ueSquar e program.

Logo for Kids 52 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Creating a Math Game

Have you ever played a computer game that asks you math questions and gives you a higher and higher score when
you answer more and more questions correctly? In this chapter, you're going to write a program called mat hGane
that does just that. You can make the math questions as hard or as easy as you want. As you put this program to-
gether, you'll learn programming tricks that will help in al kinds of programs that you write, even those that have
nothing to do with games or math.

Telling Logo to Do Math

To have Logo do math, you don't need any new commands or operations. Just put a math expression after apri nt
command and Logo will do the math and put the result on your screen.

* Let's start with some simple math. Enter the following and press Enter. Don't use any square braces
like you did with the pri nt command before. You'll find a plus (+) sign on the same key asthe equals
sign (=). Press and hold down the Shift key when you type a plus sign so that you don't accidentally
type an equalssign instead.
print 3+2
What does Logo print?

* Let'stry adding some bigger numbers. Enter and executethis:
print 3421 + 2234

Logo adds them as easily asit added 3 and 2. It also didn't care whether you put a space on either side
of the plussign or not. (Some Logo interpreters do car e about this.)

* How about adding morethan two numbers? Try this:
print 5+3+2

* What about really big numbers? Try entering this. (Each of the two number s has 15 nines.)
print 999999999999999 + 999999999999999

The answer may look a little odd: 2e+015. This is known as scientific notation. Scientists and mathe-
maticians use thiswhen they want to write very big or very small numbers.

Try This!

Logo for Kids 53 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Add more combinations of numbers together—big numbers, little num-
bers, two numbers, lots of numbers, two numbers, zeros, or anything you
like.

Let'stry subtraction. Enter and execute this:

print 53 - 20

For multiplication, most computer languages don't usethelittle x sign that you probably write for mul-
tiplication at school—there's no key on your keyboard for it, so how would you typeit? Instead, use the
asterisk (*). Thisis on the same key asthe number 8. Don't forget to press and hold down the Shift key
when you typeit. Thisway, you'll really type an asterisk and not an 8. Try thisinstruction:

print 2 * 5

Try multiplying mor e than two numbers:

print 2 * 3 * 4

To dividetwo numbers, usethe slash key. Ask Logo to 12 divided by 4.

print 12/4

If you ask Logo to divide something that doesn't divide evenly, it uses the dot known as a decimal point
to show theresult asa decimal number. Try dividing 10 by 4:

print 10/4

The answer tells you that 4 goes into 10 two and a half times. (Two fours make eight, and half of an-
other four added to thismakesten.)

How about combining multiplication and addition? Try this:
print 2 + 3 * 4

What was the answer? Did it add 2 plus 3 and then multiply the answer by 4, or did it multiply 3times4
and then add 2 to the answer ?

Let'stry thelast one again, but change the order:
3* 4+ 2
What was the answer? Did it perform the multiplication or the addition first?

You probably figured out that both times it multiplied before it added. Thisisn't a special Logo thing;
it'sa math rule about how you combine addition and multiplication. Logo isjust following thoserules.

Logo for Kids 54 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Many people who hate math like it more when they're using computers. Why? Because the computer takes care of
the boring parts and they can think more about the interesting parts, like the different patterns that numbers make
when you do different things with them. Just as you used numbers to draw the picture of the flower in the last chap-
ter, you can use math and drawing instructions together to see a picture of just how interesting some of those pat-
terns can be.

* We can draw an interesting pattern with a one-lineinstruction using ther epCount operation. First, to
seewhat r epCount does, try this:

repeat 5 [print repCount]

It outputs a number showing the count of the repetition. When you execute this instruction you'll see
that the first time the pri nt command is executed, r epCount hasalinit, the next timeit hasa2in
it, and so on until it hasa5in it at theend.

* Now we'll tell the turtle to move 200 times, and each time we'll have it move the distance output by the
repCount operation (first 1, then 2, then 3, and so forth). After each move, it will turn right 89 de-
grees. Executethisinstruction:
repeat 200 [forward repCount right 89]

You only typed oneline, and look what a complex pictureit makes!

Using math and repCount to draw a picture

Logo for Kids 55 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

* Our next picture will use multiplication. Clear the screen to give the turtle a blank screen before draw-
ingit.
cl ear Scr een

* The next instruction uses multiplication to change the amount of turning with each step. By multiplying
repCount by 3, the turtle will turn 3 degreesthefirst time, 6 the next time, 9 the next time, and so forth
until it turns 330 degrees on the 110th step:
repeat 110 [forward repCount right repCount * 3]

It'sanother strange picture:

Using repCount with multiplication to draw a picture

Sometimes multiplication can be fun, especially if you let the computer do the multiplying!

Try This!

Changing any of the numbers in that last instruction can make a com-
pletely different picture. For example, try clearing the screen with the
cl ear Scr een command and entering this:

repeat 100 [forward 20 right repCount * 5]

Logo for Kids 56 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Try changing the numbers to anything you like. You don't have to multi-
ply r epCount ; you can divide with it, use addition or subtraction with it,
or leave it alone and play with the other numbers. If you want, store this
instruction in a program file and run it. If you put the set PenCol or in-
struction in there, the pictures could be even more interesting. Use the
cl ear Scr een command between each picture to make room for each
new picture.

Mathematicians often use computers to draw pictures that use the math that they're working with just like you used
multiplication to draw the picture above. For more complex math, pictures can make it easier to understand the ef-
fect of some math that's being done to a group of numbers.

* What if you did put square braces around your math expression when you print it? Try the first math
expression again with square braces around the numbers:

print [3+2]

Istheresult different? With the square braces, L ogo treated the thing to print asa string of characters.

Numbers or Not?

Sometimes computer programs have numbers that we don't want to treat
as numbers. For example, you may think of your phone number as a
number, but unlike the price of a candy bar, no one is ever going to do
math with a phone number. If you want to buy a candy bar and a pencil
together, you add together the price of the candy bar and the price of the
pencil to find out what how much money you must pay. No one will ever
add a number to your phone number to figure something out. It's not a
quantity, or an amount of something.

We call a number such as a phone number that doesn't represent a
quantity a string of characters, or just a string. Other kinds of character
strings are just about anything with words and letters in them—your
name, the title of a song, or even the words in this book. Can you think of
any other numbers that don't represent quantities and get treated as
strings? (Hint: think of the parts of your mailing address.)

Logo for Kids 57 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

In programming languages that make you declare variables at the begin-
ning of programs, you have to say whether they will be used for strings,
numbers, or other types of data. Logo is more flexible about this, so you
don't have to worry about the type of data stored in each value.

Try This!

Try more combinations of addition, multiplication, subtraction and divi-
sion at the question mark prompt.

Creating Interactive Programs: Having Your User Set Variable Val-

ues

An interactive program is one that the user can interact with. In other words, the user can change what the program
does by clicking the mouse, typing in instructions, picking things off of menus, or even by talking into a microphone
or turning a steering whedl attached to the computer. Almost every program you've ever used on a computer was in-
teractive.

There is one program that you've run that wasn't interactive: your f | ower program. When someone ran it, whether
it was you or another friend, the turtle drew the flower and then the program was done. The program never waited
for the user to do anything when you told it to start running; it ran from its first instruction to its last one without
stopping as soon as you told it to. (How about the tic-tac-toe program that you ran—was that an interactive pro-
gram? Why or why not?)

When you click an icon with your mouse or turn a steering wheel while playing a car racing game or tell atic-
tac-toe game where you want your X, the program is probably taking information about what you did and storing it
in avariable. Another part of the program then checks the variable to figure out what to do, just asthelady intheice
cream shop in the last chapter checked the envelope you gave her to see what kind of ice cream to give you. You can
make your programs interactive using commands like r eadWor d, which gets information from the user and stores
it in a variable. Then, your program can check the variable's value and do different things depending on what it
finds.

* Enter thefollowing instruction and press Enter:

make "ani mal readWrd

Logo for Kids 58 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

It looks like nothing happened:

&> UCE Logo
? male "animal readWord

Trying out the readWord operation

Now enter theword " dog" and press Enter again:
dog

Thequestion mark reappears.

* Ask Logo about the value of theani mal variable:
print :aninal

It was set to" dog"!

? malke "animal readlord
dog

? print :animal

dog

?

readWord put a value in the animal variable

Let'sreview what happened here.

If you entered this instruction,

Logo for Kids 59

copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

make "ani mal "dog

you would be setting the ani mal variable to have the value "dog." But you didn't do this. Instead of a value with a
double quote in front of it, you put the name of a L ogo operation:

make "ani mal readWrd

Ther eadWor d operation tells Logo to wait for the user to type some text and to then grab all the text that the user
types until he or she presses the Enter key. The namer eadWor d doesn't describe this operation very well, because
it can read more than one word: as many as you want to type before you press Enter.

When you use r eadWor d with the make command like this, Logo stores the grabbed text in the variable whose
name you put after the make command. That's why your user input (the part that you typed in when r eadWr d
waited for you) got stored inthe ani mal variable.

Try This!

Try the same instruction a few more times, entering other values besides
"dog," and then check the ani mal variable's value with the pri nt com-
mand each time. Try entering numbers, or a couple of words. What hap-
pens if you don't enter anything when r eadWor d is waiting for your in-
put, and you just press the Enter key without typing in something first?

How will our math game program use variables?

When you add numbers together, the numbers that you're adding are called the addends, and the result of adding
them together is the sum. (These are math words, not Logo words.) For example, if | say that 2+3+4=9, then 2 and 3
and 4 are the addends and 9 is the sum.

Our math game will add two numbers together after storing them in variables. Well call the two variablesaddendl
and addend?2. The "1" (the number one, not a lower-case "L") and "2" in the names have nothing to do with the
values stored in these variables; they're just there to give the two variables different names. Y ou could till store 1 or
2 or 0 or 1000 or anything you want in either variable.

Before we write a program to add these numbers, let's play with addendl and addend?2 at the question mark
prompt to get used to doing math with variables.

* Createyour addendl variablewith a value of 3:
make "addendl 3

Usethepri nt command to make surethat the 3 got stored in theaddend1l variable.

Logo for Kids 60 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

* Createyour addend2 variablewith a value of 4:
make "addend2 4
Usethepri nt command to check on thisoneaswell.
* Have L ogo do some math with the two variables:
print :addendl + :addend2
What did Logo do?

Your First Interactive Program: An Adder

Before we create our mat hGame program, let's create a simpler interactive program to add two numbers. We'll call
it adder . After asking the user for two addends, it will add the two together and print the answer on the screen.

* Start up the editor and tell it to create a L ogo program file called adder . | ogo:
editFile "adder. | ogo
* Typethefollowing linesinto your text editor to create your adder procedure:
; adder. | ogo
; (your name here) (today's date here)
; Add two nunbers input by user.
to adder
; Get the input fromthe user.
print [Enter the first addend]
make "addendl readWrd

print [Enter the second addend]
make "addend2 readWord

: Tell the user the result.

print [The sumi s]
print :addendl + :addend2

end
* Save the program and exit thetext editor to return to the L ogo question mark prompt.

Before running your new program, let's look at what it does. Between thet o adder line and the end lineg, it has
three parts:

Logo for Kids 61 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

1. Thefirst part has two lines after a comment line that describes what those two lines do. If the adder program
just started off with the line that has the r eadWWr d operation, the program's user would start the program and
then just see a blank line. Remember the first time you tried the r eadWbr d operation by entering
make "ani mal readWrd? You pressed the Enter key and it looked like nothing happened. You only
knew that you should enter the word "dog" under the r eadWér d instruction because this book told you to. In
our adder program, the user needs to know when the r eadWor d operation is waiting for them to enter some-
thing. Thisiswhy theadder program hasapri nt command to tell the user what to enter ("Enter the first ad-
dend") before the line with the r eadWor d operation gets the value from the user. Like the question mark
where you type instructions to the Logo interpreter, the phrase "Enter the first addend" is called a prompt.

2. Thesecond part of the program isalot like the first, except that the prompt tells the user to enter the second ad-
dend and the program stores the value that the user entersin theaddend?2 variable.

3. The third part of the program prints the phrase "The sum is' and then prints the sum of addend1 and ad-
dend2.

Try This!

Run your adder program. Run it many times. Try entering two small
numbers for the addends, two big numbers, two zeros, and any combina-
tions of these you can think of. Try telling it to add "cat" and "dog." What
does it do? Later in this chapter we'll learn how to make your programs
handle bad input like that better.

It would be nice if the adder program printed the words "The sum is" and the answer all on the same line. Let's try
combining these words and the variable values on one line of the screen.

* Run adder one moretime, and give it two regular numbers as input to make surethat it doesn't have
strangevalueslike " cat” or "dog" left over from your testing earlier.

* Execute thefollowing instruction at the question mark prompt:
print [The sumis :addendl + :addend2]
Logo prints exactly what you told it to on the screen: " The sum is:addendl + :addend2" . When you put
alist of wordsinside of square brackets after a pri nt command, Logo prints exactly what it found be-
tween those brackets on the screen.

We don't want the names of the variables (addendl and addend2) to show up after the words " the
sum is." Wewant their valuesto show up there.

Instead of having pri nt put alist of text expressions on the screen, we'll havethe sent ence operation
combine the text and numbers we want and then have the pri nt expression put the result on the

Logo for Kids 62 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

SCreen.

First let's store the result of adding the two addendsin its own variable called t ot al with thisinstruc-
tion:

make "total :addendl + :addend2

The sent ence operation combines everything you give it into one list. You can give it strings of text
that you want to show up exactly asthey are by putting a double quote before each one. Anything with-
out this double quote must be something that Logo can understand, such as a number or a variable
namewith a colon. Enter thisinstruction:

print (sentence "The "sum"is :total)

When you enter this, Logo prints the same sentence as your adder program did, but with the sum on
the sameline asthe wordsthat introduceit.

In the last chapter we learned that t hi ng is an operation, not a command, and that operations output information to
be used by a command (or by another operation!) In the instruction that you just typed, sent ence isalso an opera-
tion, which outputsitsinformation to the pr i nt command in the instruction above.

Try This!

Edit your adder . | ogo program to print one line instead of two at the
end of the program. For example, if the addends are 4 and 5, the output
should say "The sum is 9".

Being able to combine regular strings of text with the values of variables
will be important when we get to the math game.

Picking Random Numbers

If the math game will pick two numbers and ask the game player to add them, how will it pick these two numbers?

With my favorite part of any programming language: the r andomoperation. (In other languages, it's usually called
the random function.)

*

If your computer isusing the Windows oper ating system and there are any graphics on the screen, enter
thecl ear Text command to clear the graphicsand set up your whole screen for text output:

cl ear Text

Logo for Kids 63 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

* Execute the following instruction 10 times. You can type it in and execute it 10 separate times, but it
would befaster and easier tousear epeat loop to makeit happen 10 times.

print random 4
It didn't always produce the sameresult. What was the highest number you saw? What was the lowest?

* Try the same thing again, only with the number 12 asinput to the r andomoperation. Do this 10 times
aswell.

print random 12

What was the highest number you saw? What was the lowest? Try it again to see if you get the same
numbers.

The random operation looks at the number that you give it asinput and picks a number less than that to output. If the
number is 4, the number it picks could be anything from 0O to 3; if the number is 1000, it will pick a number from 0
to0 999.

What do you do with these numbers? Anything you want! Think of a place where you would use a number, and then
use a random number instead. For example, when you draw with your turtle, three commands that need a number to
do their job are set PenCol or, f or war d, and r i ght . Using the r andomoperation with these commands, you
can write a short little program to draw crazy pictures, and it draws a different crazy picture every timeyou run it.

* Createaprogram filecalled cr azyPi c. | ogo:
editFile "crazyPic.l ogo

* Typein thefollowing text to be your program:
; crazyPic.logo
; (your nanme here) (today's date here)
; Draw a crazy picture!
to crazyPic

cl ear Scr een

repeat 50 [
set PenCol or random 16 ; pick a color at random
forward random 50 ; move forward a random anount
ri ght random 180 ; turn right a random anmount
end

* Saveit, quit the editor, and run your cr azyPi ¢ program.

* Then run it again, and again and again! The pictureisdifferent every time.

Logo for Kids 64 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Four different pictures created by running the same crazyPic program four times

* Try changing some of the numbersin the program and see what happens. For example, what if it only
picks from four different random colors instead of 16? What happens if the turtle can move or turn
more or lessthan the 180 degrees given in the program above? If it makes morethan 50 or less than 50
lines to make each picture, how doesthe picturelook different?

Drawing picturesis just the start of the fun you can have with the random operation. For example, some program-
ming languages and L ogo interpreters give you away to play musical notes on the computer's speaker. Usualy, you
use numbers to tell the computer which notes to play. When you can do this, the random function lets you create a
program that makes up music just as the little program above makes up pictures.

Having Your Program Make Decisions

What if Ringo the Robot could look inside of an envelope called "flavor" and then give you the flavor of ice cream
that was written on the piece of paper inside? If Ringo really existed, it's more likely that instead of looking inside of
an envelope he would check the value of avariable called f | avor instead. Most robots have computers attached to
them, and looking at variablesis much easier for acomputer than reading words off of a piece of paper.

No matter how Ringo found out what flavor you wanted, he would have a decision to make. Sometimes he would
have to give you chocolate ice cream, and other times he would have to give you vanillaice cream. How can you tell

Logo for Kids 65 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Ringo, or acomputer, to do one thing if a variable has one value and another thing if the variable has another value?
Logo'si f command lets you do this. This command gets two inputs: first you describe a condition that will be ei-

ther true or false, and then inside of square brackets you list one or more instructions to perform if the condition is
true. Let'stry it.

* At Logo's question mark prompt, createavariablecalled f | avor with avalue of " chocolate."

make "fl avor "chocol ate

Enter an i f instruction that tells Logo "if the value of the f | avor variable equals 'chocolate' then
print the message 'here€'s a chocolate cone.' " (Notice how it has two pairs of square brackets: one
around the part to " print" on the screen, just like we've always done, and another around the whole
pri nt instruction. That'sthe one that showsthei f command what to executeif its condition istrue.)

if :flavor = "chocolate [print [here's a chocol ate cone]]

sguare brackets to
show what to print

if :flavor = "™wanilla [print [here's a wanilla cone]]

T~

sguare brackets to show what
to execute if this condition is true

b

Which square brackets do what

The message prints, becausethef | avor variable does have a value of " chocolate.”
* Try thissimilar instruction:
if :flavor = "vanilla [print [here's a vanilla cone]]
When you execute the instruction, it looks like nothing happens. Why? Because you told Logo " if the
value of thef | avor variable equals'vanilla' then print the message ‘here'savanilla cone.' " Thevalue

of thef | avor variableis still " chocolate," and the condition that thei f instruction checksis false, so
it doesn't print its message.

Logo for Kids 66 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

T malke "flavor "chocolate

?* if :flavor = "chocolate [print [here's a chocolate conel]]
here's a chocolate cone
?* if :flavor = "vanilla [print [here's a wvanilla conel]

?

Using the if command to check the flavor variable's value

If areal ice cream store only had chocolate ice cream, and you asked for vanilla, wouldn't it be alittle strange if they
didn't do or say anything at all? Wouldn't it make more sense for them to tell you, "Sorry, we only have chocolate"?
If you want to perform one action (or a list of actions) when a condition is true and another when the condition is
false, you can do thisin Logo with thei f El se command.

This command is likei f, but with alittle more. Likei f , i f El se starts with an expression that is either true or
fase. Then, inside of square brackets, it has one or more instructions to execute if the expression is true. The
i f El se command also has another pair of square brackets after that, with the instructions to execute if the expres-
sionisn't true.

Ani f El se command can get pretty long, so instead of typing the whole thing at Logo's question mark prompt,
let's store one in a program. Then we can run it over and over and make changes if we want.

* Create a program file called i ceCr eam | ogo by entering the following instruction at the question
mark prompt:

editFile "iceCream | ogo
* Typethefollowing linesinto your editor to createthei ceCream | ogo file:
; iceCream | ogo
; (your name here) (today's date here)
; Test the ifEl se comand.
to i ceCream
; Get input fromuser, store in flavor variable.
print [What kind of ice creamdo you want ?]
make "fl avor readWrd
ifElse :flavor = "chocol ate |
print [here's a chocol ate cone]

print [sorry, we only have chocol at €]

Logo for Kids 67 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

end

Most partsof thisprogram look just like things you've typed into other programsbefore: it startswith a
comment describing what the first part does, then prints a prompt asking the user a question, then
reads the user's input into the f | avor variable. Thei f El se statement starts off with the condition
:flavor = "chocol at e and follows it with a list of instructions to execute if the condition is true.
(This"list" isreally just oneinstruction: print [here's a chocol ate cone].) Another pair of
squar e brackets show what to do if the condition isn't true: print the message " sorry, we only have
chocolate."

When usingani f El se command, the second list of instructionsis supposed to start on the sameline as
the ending of thefirst list. If | had donethis, the left square bracket that startsthe second list of instruc-
tionswould have been on the same line astheright square bracket that endsthefirst list of instructions.
(Don't confuse these with the squar e brackets that show thetwo pri nt instructions what to print.) Be-
cause | couldn't fit both listson oneline, | used thetilde character (~) to say "treat the next line as if it
were starting right here" You can use that anywhere you want in Logo; | just haven't used it yet be-
cause we've been using such short instructions.

ifElse :flavor = "chocolate |
end of print [here's a chocolate cone]

first Iist\q>
z [tide]

print [sorry, we only have chocolate]

start of
secaond]
list

Connecting the two lists with the tilde character

Note how each one-line" list" of instructionsin this program (the single pri nt instruction in each list)
is indented two spaces from the square brackets that surround it. If either list had more than one in-
struction, indenting those instructions together would make it clearer that they work together as a
group, which would make the program easier to read.

* Save your i ceCr eam | ogo file, exit out of your editor, and run thei ceCr eamprogram that you cre-
ated. Run it several times, and answer "vanilla" or " chocolate" or " strawberry" or " grasshopper” or

anything you like. Try running it several times and give it different answers, and see what it does. Try
answering with a number or with a blank line. How doesit respond?

Starting Your Math Game

Logo for Kids 68 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

Now you know all you need to know to create the simplest version of your math game. It will ask one math ques-
tion, wait for the answer, and then tell the user whether the answer was correct or not. (Later, we'll have it ask many
math questions and keep score of how many correct answers were given.)

Let'slook at the program before you typeit in to see how it uses the various tricks you've learned.

; mat hGane. | ogo
; (your name here) (today's date here)
; Gve the user a math qui z.

to mat hGane

; Pick the two nunbers to add and save their total.
make "addendl random 10

make "addend2 random 10

make "total addendl+addend?2

; Ask the user the question and get the answer.
print (sentence "what "is :addendl "+ :addend2 "?)
make "answer readWrd

; See if the user is right or wong and | et them know.

ifElse :total = :answer |
print [You' re right!]

print (sentence "No, "it's :total)

—_— ——

end

The program has three sections, with a blank line between each section and a comment at the start of each section
describing what it does:

1. Thefirst section creates three variables. The first two variables, the two addends, are random numbers between
0 and 9. Because they're random numbers, the program will ask a different math question almost every time
you run it. The third variable, t ot al , isthe sum of the two addends.

2. The second section prints the math question and reads the user's answer into the answer variable. To ask this
math question, the program uses the sent ence operation to combine the words in the question with the val-
ues assigned to the two addend variables. For example, if addendl has the value 7 and addend?2 is 3, the
printed question will be "What is 7 + 37"

3. Thethird section hasan i f El se command. It compares the user's answer, which was stored in the answer
variable in the second section, with the right answer, which was stored in thet ot al variable in the first sec-
tion. If it's true that these two are equal, the program prints "You're right!" If it's not true, it could just print
"You're wrong," but it does better than that: it uses the sent ence operation to combine the right answer (the
t ot al variable) with words to make a message telling the user the right answer. For example, if t ot al hasa
value of 10, the message will be "No, it's 10".

Logo for Kids 69 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

* Create a program file called mat hGane. | ogo by entering the following instruction at the question
mark prompt:

editFile "mathGane. | ogo
* Typein thelines shown aboveto create your mat hGane. | ogo program.

* Save the program, exit it, and run your nmat hGane program a few times. If you always get the right an-
swer, try entering the wrong answer on pur pose—it's important to check that your program reacts the
way you expect to everything your user might do. What if you answer the math question with aword in-
stead of a number? What if you answer with a blank line?

Try This!

If the two addends are always less than 10, then the math will be pretty
easy. What would you change in your program to make the math prob-
lems harder? Try it.

"While" Loops

Earlier in this chapter we saw how the r epeat command tells Logo to execute the same list of instructions more
than once. Do you remember how many times Logo executes the instructions in a list when you use the r epeat
command? As many times as you tell it to! For example, the following instruction gives Logo a list with two in-
structions in it (move forward 50 turtle steps and then turn right 90 degrees) and tells Logo to execute those two in-
structions four times:

repeat 4 [forward 50 right 90]

What if you want Logo to repeat a list multiple times, but you don't know yet how many times? For example, we
want to set up our math game so that it keeps asking math questions as long as the user wants to answer them.

We can do thiswith awhi | e loop. A whi | e loop executes itsinstruction list as long as a certain condition is true.
It'salot likethei f command that we saw before, which had a condition that was either true or false and alist of in-
structions to execute if the condition was true. For example, in the following i f instruction, the condition that is ei-
ther true or falseis: fl avor = "vani |l | a and the part in square brackets is what gets executed if the condition
istrue.

Logo for Kids 70 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

square brackets to
show what to print

if :flavor = "wanilla [print [here's a wvanilla cone]]

T

sguare brackets to show what
to execute if this condition is true
==

Y

Reviewing the if statement: which square brackets do what

For a Logo whi | e loop, the condition goes inside of square brackets, just like the part to execute. Before we add
thisto our math game program, let'stry whi | e with asmaller program to get used to it.

* Enter the following instruction to tell your text editor to create a new program file called
whi | eTest . | ogo:

editFile "whileTest.|ogo

* Typein thefollowing text to createawhi | eTest procedureinthewhi | eTest . | ogo program:

; whileTest. | ogo
; (your name here) (today's date here)
; Play with the while command.

to whil eTest

make "I oopAgain "y ; Initialize the | oopAgain variable
; Keep asking user if Logo should | oop again.
while [:loopAgain = "y] [
print [Should Logo | oop again (y/n)?]
make "I oopAgai n readWrd
]

; Fini shing nmessage.
print [I guess you're all done!]

end

Logo for Kids 71 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

In between thet o whi | eTest line and the end line that start and end the procedure, whi | eTest
hasthree parts:

1. Thefirst part createsavariable named | oopAgai n with avalueof "y".

2. The second part has a list of two instructions (the pri nt line and the nmake line) that it repeats
while the condition : | oopAgai n = "y istrue. Note how these two instructions are indented two
spaces from the square braces that surround them, making it clearer that they work together as a
group. You should always do thiswith the instructionsinside of awhi | e loop.

Look back at the first part of the program again, in its comment: what does it mean to initialize
(pronounced "ih-nih-shull-ize") a variable? Well, imagine what would happen to the loop in this
program's second part if the | oopAgai n variable hadn't been created first. The loop's instruc-
tions would never be executed, because when the loop's test condition got checked, and it asked the
question "does | oopAgai n equal 'y'?" the answer would be "no" the first time the question was
asked. Thel oopAgai n variablecan't equal "y" if it doesn't even exist.

Toinitialize avariableisto giveit a certain value to start with because a later part of the program
will use that variable. Programs may act weird when they try to check variablesthat weren't prop-
erly created and initialized first, no matter what language they were written in. Because of this,
certain languages such as Java won't even let you run your programs unless you first make sure
that everything that might need to beinitialized really is.

3. Thethird part of thewhi | eTest procedure, which happens after thewhi | e loop has executed its
list of instructionsfor the last time, tellsthe user that he or sheisall done with the program.

* Save your program, leave the editor, and run the whi | eTest program. Try answering y and then n
once. Try answering with y many times before entering n. Try answering with n to the first question.

Try This!

Run the whi | eTest program and answer with a letter that isn't y or n,
like x or z or a number. What does the program do? Why?

Can you put any instructions you want inside of awhi | e loop? Sure, but remember that the list of instructions to
execute must include something that keeps the condition from being true forever. For example, the loop above runs

aslong asthel oopAgai n variable hasthe value "y", and the instruction
make "I oopAgai n readWrd

allows | oopAgai n to be set to a value other than "y" so that the loop can finish. What do you do if aloop runs

Logo for Kids 72 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

without ever stopping?

* Thefollowing whi | e loop is short enough that you don't need to create a program file for it. Just enter
it at the question mark prompt:

while [2+2 = 4] [print [yeah!]]

* When you execute this instruction, it prints "yeah!" on the screen over and over and over. How long
will it do this? Well, how long will two plus two equal four? Forever! Programmers call this " being
stuck in aloop." Fortunately, UCB Logo does provide away to break out of such aloop:

» If you'reusing a computer running Windows, hold down the Ctrl key and type the letter Q.
« If you'reusing a computer running Linux, hold down the Ctrl key and typetheletter C.

» If you'reusing a Macintosh, hold down the command key and typea period (.).

If you're not using Logo and your computer ever "hangs," or gets stuck and ignores everything you do, it's probably
stuck in aloop in one of the programs it's running. For example, the operating system program itself could be stuck
in aloop. Sometimes there's just no way out of this, and you have to turn your computer off and start it up again. At
least if Logo gets stuck in aloop, you now know how to break out of it, so remember the keystroke to do this on
your computer!

Repeating the Math Questions and Keeping Score

Now that you know how to create awhi | e loop, let's wrap the math game in one so that its users can play as many
times as they want each time they start the program up.

* Bring up themat hGane. | ogo filethat you created so that you can edit it.
editFile "mat hGane. | ogo

* Add thelines shown in bold below. Thelinesthat are already there between thet o nat hGane lineand
the end line (along with the new lines that ask the user if he or she wantsto play again) will be the body
of your whi | e loop. To indicate that these lines all work together as part of the whi | e loop, indent
them two spaces past the squar e braces that enclose them as shown below.

; mat hGane. | ogo

; (your name here) (today's date here)
; Gve the user a math qui z.

to mat hGane

make "pl ayAgain "y ; Initialize the playAgain variable

Logo for Kids 73 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

; Keep asking if Logo should play again.
while [:playAgain = "y] [

; Pick the two nunbers to add and save their total.
make "addendl random 10

make "addend2 random 10

make "total addendl+addend?2

; Ask the user the question and get the answer.
print (sentence "what "is :addendl "+ addend2 "?)
make "answer readWrd

; See if the user is right or wong and | et them know.
ifElse :total = :answer |
print [You're right!]

print (sentence "No, "it's :total)

; Ask the user if he or she wants to play again.
print [Answer another math question (y/n)?]
make "pl ayAgai n readWrd

]

; When Logo gets here, the gane is done.
print [I hope you enjoyed nat hGane!]

end

* Save your fileand try your game. Don't play it too many times yet, because we're about to make it even
better by adding just afew morelines.

Let's have mat hGane keep track of how many questions were answered correctly and how many were answered in-
correctly.

* Edit the mat hGane. | ogo file again and add the lines shown in bold type below.

Thefinal pri nt instruction, which tells the user what the score was, is long enough that | split it onto
two lines. (Remember, the ~ tilde character tells Logo "look on the next line for the rest of thisinstruc-
tion.") You can leave out thetilde and write thisall on onelineif you want. If you do spread it out over
two lines with the tilde, indent the second line as shown to make it clearer to people reading your pro-
gram that it's not the beginning of a new instruction.

; mat hGane. | ogo
; (your nanme here) (today's date here)
; Gve the user a math qui z.

to mat hGanme

Logo for Kids 74 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

make "rightAnswers O ; Initialize variables that keep track
make "wongAnswers O ; of right and wong answers.

make "playAgain "y ; Initialize the playAgain variable

; Keep asking if Logo should play again.
while [:playAgain = "y] [

: Pick the two nunbers to add and save their total.
make "addendl random 10

make "addend2 random 10

make "total addendl+addend?2

; Ask the user the question and get the answer.
print (sentence "what "is :addendl "+ addend2 "?)
make "answer readWrd

; See if the user is right or wong and | et them know.
ifElse :total = :answer |

print [You're right!]

make "right Answers :right Answers+1
%~

print (sentence "No, "it's :total)

make "w ongAnswers :w ongAnswers+1

]

; Ask the user if he or she wants to play again.
print [Answer another math question (y/n)?]
make "pl ayAgai n readWrd

]

; When Logo gets here, the gane is done.

print [I hope you enjoyed mat hGane!]

print (sentence "You "answered :right Answers ~
"correctly "and :w ongAnswers "incorrectly.)

end

* Save your revised program and run it. Throw in a few wrong answers on purpose to make sure that
they're being counted correctly.

Try This!

Think of a score and then try to make mat hGanme end up with that score
at the end. Can you make it come out with zero right answers and zero

Logo for Kids 75 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

wrong answers at the end? If not, why not? Look at the program's source
code for hints.

Y ou added three parts to this program to make it keep score. The first and third should be familiar:

1. Thetwo new variables get initialized at 0.

2. Each time the user answers a math question, either the r i ght Answer s or w ongAnswer s variable is ad-
justed to reflect the new score.

3. At the end, the program uses the sent ence operation to output a message combining the r i ght Answer s
and w ongAnswer s variables with the words that make a complete sentence to print on the screen.

Let'slook more closely at how one of the variablesis adjusted:
make "right Answers :right Answers+1

Because the program initializes r i ght Answer s with avalue of 0, the first time this instruction gets executed it's
almost the same as saying this:

make "right Answers 0+1

Zero plusoneisone, sori ght Answer s then has the value 1 instead of 0. The next time this gets executed, it will
be like saying this,

make "right Answers 1+1
sori ght Answer s will equal 2.
To take a variable with a number in it and then add one to that number is something that computer programs do all
the time, because programs often need to track how many times something happened. Adding one to a humber

stored in a variable happens so often that we have a special word for it: incrementing the variable's value. Subtract-
ing one from the value of a variable a so happens often, and we call that decrementing the variable's value.

Your mat hGame program keeps track of how many times two different things happen: how many times right an-

swers are entered and how many times wrong answers are entered. That's why it has two variables to keep track of
these.

Improving the Program'’s Interface

Earlier in this chapter, we found out that an interactive program is one that the user can interact with. The user can
change what the program does by clicking the mouse, typing in instructions, picking things off of menus, or per-
forming other actions to tell the program what to do. The interface of a program is the parts that a user sees and

Logo for Kids 76 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

deals with and the steps that the user takes to get anything done. For example, the interface of an e-mail program
might consist of the menus and icons that you click on to tell it what to do. The interface of your mat hGane pro-
gram is the text messages that appear on the screen to give the user clues about what it expects, as well as the pro-
gram's pauses to wait for the user'sinput.

Try This!

Play mat hGane, but type in the word "hello" when it asks you for the sum
of the two addends and enter it again when mat hGane asks you if you
want to answer another math question. How does it react? Try again, but
this time don't answer anything in response to these questions—just
press the Enter key. What does it do this time? Look over the program's
code again. Why do you think it did what it did? How a program responds
to bad input is part of its interface as much as how it responds to good
input.

How do you improve an interface? A good start is to look for things about running the program that are annoying
and then try to make them less annoying. For example, when running mat hGane, | think it's annoying that I must
type a"y" and press Enter after every single math question. If | want to answer 15 math questions, | don't like
pressing "y" 14 times after the first math question. My answer will usually be "yes," so the program would be easier
to use if, when it asks me about answering another math question, pressing Enter without typing anything gets
treated the same as entering "y" and then pressing Enter.

Another way to improve the interface is with error checking. This consists of figuring out problems that might hap-
pen and adding instructions to the program to make it easier for the user to see and correct these problems. For ex-
ample, if mat hGane asks the user what 2+3 is and the user responds with "hello," it would be nice if mat hGane
could tell the user " 'hello’ is not a number. Try again.”

We will improve the interface of mat hGame by making both of these changes. The first change is simple: if the
user responds to the prompt about playing again by just pressing Enter, we don't want the whi | e loop to end, so
even though the pl ayAgai n variable won't have a"y" in it, well put one in it to make sure that the whi | e loop
keeps looping.

* Bring up themat hGane. | ogo filethat you created so that you can edit it.
editFile "mathGane. | ogo

* In your program, find the first three lines of the text shown below. Put square brackets around the " y"
at the end of the second line. This showsthe user that "y" isthe default choice. (In other words, if they
don't pick a choice, then that's the one that the program will assume that they want.) Although we've
seen square brackets used several times in Logo programs before, this pair of them has nothing to do
with Logo. It won't affect how the program runs; it's there to show the user something—it's part of the
user interfacel

Logo for Kids 77 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

; Ask the user if he or she wants to play again.
print [Answer another math question ([y]/n)?]
make "pl ayAgai n readWrd

; If the user just pressed Enter, reset playAgain to

if empty? :playAgain [
make "playAgain "y
]

y

]

; \When Logo gets here, the gane is done.

print [I hope you enjoyed mat hGane!]

print (sentence "You "answered :right Answers ~

g "correctly "and :wongAnswers "incorrectly.)
en

* Under thelinewith the ([y] / n) part, skip aline and add the bolded four lines shown above (the com-
ment and thethreelinei f instruction). Theenpt y? part isan example of a special part of L ogo called
predicates (pronounced " pred-ih-kits') which are often spelled with a question mark at the end. Logo
treats this particular predicate, along with the part after it (: pl ayAgai n) as conditions that are either
trueor false, depending on whether pl ayAgai n hasavaluein it or isempty. Logo treatsall predicates,
along with any input information that goes with them, as a condition that's either true or false, so predi-
cates are often used with i f commandsand whi | e loops. Think of the predicate as asking a short ques-
tion about the input right after it. Above, it's asking "is pl ayAgai n empty?" Other predicates ask
other questions; we'll meet another shortly.

If pl ayAgai n is empty, the i f instruction will execute the instruction between the square braces,
which sets pl ayAgai n back to "y." If pl ayAgai n isnot empty, thei f instruction will skip past the
part in the square braces, leaving the pl ayAgai n variable alone, and the program will continue the
sameway it did before you added theselines.

* Save your changes and run mat hGane again. Try answering the " Play again ([y]/n)?" question with
different answers: y, n, a carriage return with no other characters, a number, a different letter, and
anything else you can think of. Does mat hGane behave the way you thought it would?

Another handy predicate is nunber ?. (Aswith enpt y?, the question mark is part of how it's spelled). Logo treats

it and the input after it as atrue condition if the input is a number and as afalse condition if the input isn't. Let's play
with it alittle before we put it to work for us.

* First, let's see what L ogo does when wetell it to print a condition that istrue or false. Enter and execute
the following instruction at the question mark prompt:

print 3 =3

Thisislike saying " tell me whether thisistrueor not."

Logo for Kids 78 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

* Try it again when something that isn't true;
print 3 =4

Now you've got the idea: if you tell Logo to print a condition is either true or false, it prints the word
"true" or theword " false.”

* Let'stry thiswith the nunber ? predicate. Execute the following instruction:
print nunber? 3
ThisislikeaskingLogo " Isit true or falsethat 3isanumber? Print the answer."
* Try something that you know isn't a number:
print nunber? "hello
* A predicate'sinput can also beavalue stored in avariable. Enter these two instructions:
make "testVar 5
print nunber? :testVar
* Try thisagain with something that isn't a number stored int est Var :
make "testVar "dog
print nunber? :testVar
* What if you have L ogo do some math and output the answer to the nunber ? predicate? Try this:
print nunber? 3+2

Earlier we said that it would be nice, when mat hGae asks the user what 2+3 is and the user responds with "hello,"
if mat hGame could tell the user " 'hello’ is not a number. Try again." Now we have what we need to do this, be-
cause the nunber ? predicate can check whether the user's response is a number. How many times should we ask?
As many asit takes to get the user to answer with a number. How do we tell Logo to ask over and over until the user
enters a proper number? With awhi | e loop! Let's try this with a little program as a test before we add it to the
mat hGane program.

* Createanew program file called nunber Test . | ogo.
editFile "nunberTest. | ogo

* Typein the following text for your program. (Becauseit'sjust alittletest program, | got lazy and didn't
add any comments.)

t o nunber Test

make "user Answer "hello

Logo for Kids 79 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

whil e [not nunber? :userAnswer] [
print [Enter a nunber.]
make "user Answer readWrd
i f not nunber? :userAnswer |
print [That's not a numnber.]

]
print [OKI That's a numnber!]

end

We saw beforethat if awhi | e loop'stest condition checks a variable's value, then that variable should
beinitialized first. It's alittletrickier here than when we did it with the pl ayAgai n variable. We want
the loop to keep repeating as long as the variable doesn't have a number in it, so there are two things we
haveto remember:

* Once nunmber ? :user Answer turns out to be true, we're all done with the loop, because we'll
have a number in user Answer . We want to keep going when it isn't true, so we usethe not opera-
tion in the condition at the beginning of the loop. This whi | e loop is saying " While the value in
user Answer isnot a number, keep executing the instructions inside the square brackets." Thei f
instruction also uses the not operation to check whether it should print the message " That's not a
number."

» Ifuser Answer isinitialized with a number, thewhi | e loop'slist of instructionswon't even execute
once, and the user won't get to enter anything, so it must be initialized with something that isn't a
number. | picked theword " hello,” but could have picked anything.

* Save the program, quit the text editor, and run your nunber Test program a few times.

Try This!

A few pages ago you used the pri nt command to ask Logo whether
various conditions (3 = 3,3 = 4, nunber? 3, and more) were true or
false. Try them again, but put the operation not after the pri nt com-
mand like this: print not 3 = 3. This is like telling Logo "print
whether the following condition is not true." Or, it's like saying "if the fol-
lowing condition is true, print ‘false," and if the condition is false, print
'true." "

Using not to make things backward may seem like a confusing little puz-

Logo for Kids 80 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

zle, but look how valuable it was in our nunber Test program. Logo exe-
cutes any whi | e command's instruction list as long as the whi | e condi-
tion is true. In nunber Test , we wanted it to repeat as long as a certain
condition ("Does user Answer have a number in it?") was not true, be-
cause we wanted the program to keep asking the user to enter some-
thing until he or she entered a number. So, we put a not operation in
front of the nunber ? : user Answer test so that as long as the test was
false, the while command would see the whole condition
(not nunber ? : user Answer) as true and keep repeating the whi | e
command's instruction list.

Now that we've got a better feel for how to use the nunber ? predicate, we're ready to put it to work in the nat h-
Gane program to improve the program's user interface.

* Bring up themat hGane. | ogo program filein your text editor.
editFile "mathGane. | ogo

* Thetext below that isnot in bold text should already be in your mat hGane. | ogo file. Find it and add
the bolded text where it's shown here. Pay extra attention to the square brackets that you need to add,
because if you miss one the program won't work.

; Pick the two nunbers to add and save their total.
make "addendl random 10

make "addend2 random 10

make "total addendl+addend?2

; Ask the user the question and get the answer.
make "answer " Not ANunber
whil e [not nunber? :answer] |

print (sentence "what "is :addendl "+ addend2 "?)
; Check whether the answer is really a nunber.
make "answer readWrd

i f not number? :answer [
print [Pl ease answer with a nunber.]

]

; Once we reach this point, we know that :answer
; stores a nunber.

; See if the user is right or wong and | et them know.
ifElse :total = :answer |

Logo for Kids 81 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

print [You're right!]

make "right Answers :right Answers+1
][.._

print (sentence "No, "it's :total)

make "w ongAnswers :w ongAnswers+1

]

You won't completely leave the non-bold text that was already there alone. Now that some of it isinside
of aloop, you should indent it to make the program easier toread.

Note how instead of saying " That's not a number" like our little nunber Test program did, the error
message in mat hGanme says " Please answer with a number." Being polite to the user is an important
part of a good interface—no one likes an obnoxious program!

* Save the program, quit the text editor, and run your mat hGame program a few times. Have someone

else try it. Ask them what they think of the interface, and if there's anything that could be improved
about it.

What We Learned

In this chapter, we learned:

» How to make Logo do math.

* How to use variables to do math.

» What interactive programs are and how to create a simple one.

* What ther andomoperation does, and how to use it make strange pictures.

» How to have your program make decisionsusing thei f andi f El se commands.

» How to have Logo execute a list of instructions over and over as long as a certain condition is true (or, if neces-
sary, aslong asit's not true) using awhi | e loop.

» How tousetheenpt y? and nunber ? predicatesto check on conditions.

e Why aprogram'sinterface is important, and afew ways to improve it.

New Commands and Operations in This Chapter

(See the "Procedures Reference” Appendix in the back of the book for brief descriptions of what these do.)

Logo for Kids 82 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

New Commands

 cl earText

e if
e [fElse
e while

New Operations

e enpty?

* not

* nunber?
* random

* readWrd
* repCount

e sentence

More Things to Try

» Convert mat hGame to ask the user multiplication facts instead of addition. Remember, Logo uses the asterisk
(*) instead of the plus sign for multiplication.

» Convert mat hGarme to ask the user subtraction facts. Thiswill be alittle trickier, so here's a hint about the tricky

part: after executing the following two instructions, what's the biggest value that addendl1 can have? Will it
ever be bigger than sun?

make "sum random 30
make "addendl random :sum

e Change mat hGanre to aways ask 10 math questions instead of letting the user control how many questions it
asks.

Logo for Kids 83 copyright 2002 Bob DuCharme

Chapter 3. Creating a Math Game

» Think of aprogram that you use often and list three things that could be done to improve its interface.

» Write an interactive graphical program. All it has to do is to ask the user for information and uses that informa-
tion to affect how the turtle draws a picture.

» Look at the source code of thet t t program again. Are there any commands or operations that you didn't recog-

nize before but that you recognize now? |s there anything that gives you ideas for things that you can add to the
mat hGane program?

Logo for Kids 84 copyright 2002 Bob DuCharme

Chapter 4. Glossary

Glossary

Highlighted terms in each definition have their own entriesin the glossary.

binary ("bye-nurry") A binary file is usually arranged in a special way so that only certain programs that know
about that arrangement know how to read that file off of a computer's disk and do something with it. When viewed
with atext editor, binary fileslook like a mess. Pictures and music are almost always stored in binary files. Compare
thiswith text files.

case-sensitive A case-sensitive program cares about the difference between upper- and lower-case letters. If it asks
you to type "YES" and you type "yes," that won't be good enough. Logo is case-insensitive, so it considers "YES'
and "yes" to be the same thing.

character A single letter, numeric digit, punctuation mark, or space. The word "dog" and the number "100" each
have three characters in them.

code A short version of the term "source code." Programmers sometimes use these termsto refer to the contents of a
program that they typed. Typing instructions into a program is often called "coding." If a program has to be com-
piled, or converted into something else in order for a computer to run it, "source code" refers to the original instruc-
tions written for the computer before they were compiled.

command In Logo, a specia word, or procedure, that tells Logo to do something. (Outside of Logo, the word "com-
mand" often refers to what Logo calls an instruction. Compare the definition of operation.

command prompt One or more characters that appear on your screen to show you where to enter instructions. In
Logo, the command prompt is usually a question mark.

computer science The study of programming languages, operating systems, and other parts of building and using
computer programs.

cursor A character on your screen, usually an underscore (_), that shows where your letters, numbers, and spaces
will appear on the screen when you type them on the computer keyboard.

declaring variables Listing out, at the beginning of a program, which variables the program uses. Some program-
ming languages make you do this, but Logo doesn't.

decrement To subtract one from a number. If you decrement 5, you'll have 4; if you decrement 100, you'll have 99.
Sometimes programs decrement number values stored in variables when they're counting something.

double quote A term that programmers often use for the quotation mark character (). It's on the same key as the
single quote, but you need to press down the Shift key to type the double quote.

error checking Having your program check for things that might go wrong and then either correcting them or let-
ting the user know about them.

error message A message to the user about something that went wrong. A good error message should be easy for
the user to understand.

execute To execute a program or instruction is to run it. Once you type a Logo instruction at Logo's command

Logo for Kids 85 copyright 2002 Bob DuCharme

Chapter 4. Glossary

prompt, press the Enter key (or, on aMacintosh, the return key) to execute that instruction.

grammar The rules for putting together the words of a language, whether it's a spoken language like English or
Spanish or a programming language like Java or Logo.

increment To add one to a number. If you increment 5, you'll have 6; if you increment 100, you'll have 101. Some-
times programs increment number values stored in variables when they're counting something.

indent To put extra space at the beginning of aline to moveit over.

; This Logo conment is not indented.
; This Logo comrent is indented two spaces.
; This Logo comrent is indented four spaces.
; This one is also indented four spaces.

Programmers often indent a group of instructions (for example, the instructions between the square brackets of an
i f orwhi | e instruction) the same amount to show that they work together.

initialize ("ih-nih-shull-ize") If part of your program checks the value of a variable, but that variable doesn't have a
value, the program could have problems. Putting a value into a variable to make sure that it hasavalueis called ini-
tializing it.

input Information coming into a computer. Input might come from a file on a disk, or from another computer
hooked up to yours by a phone line, or from a microphone that you're singing into, or from a keyboard that you're
typing on. Logo has a special meaning for "input"; see the definition for parameters. (Also, compare the definition
of output.)

instruction A combination of one or more Logo commands and operations and the input that they need to do their
job. f or war d isacommand that needs a number after it; f or war d 50 isacomplete instruction.

Usually, a complete line that you type at the Logo question mark prompt or in aLogo program (likef or war d 50)
is an instruction, although an instruction can be spread out over multiple lines. You can also put multiple instruc-
tions on one line.

interactive An interactive program is one that the user can interact with. In other words, the user can change what
the program does by clicking on the mouse, typing in instructions, picking things off of menus, or even by talking
into a microphone or turning a steering wheel attached to the computer. Almost every program you've ever used on a
computer isinteractive.

interface The parts of a program that a user sees and deals with, and the steps that the user must take to get anything
done. For example, the interface of an e-mail program might consist of the menus and icons that you click on to tell
it what you want it to do. The interface of your mat hGame program that you create in this book is the text scrolling
up the screen giving you clues about what it expects of you and the pauses that wait for your input.

Linux ("linnix") An operating system that runs on computers of all sizes. Linux is free and very popular with pro-
grammers.

Logo A programming language invented over thirty years ago to make it easier for kids to learn programming.

Logo for Kids 86 copyright 2002 Bob DuCharme

Chapter 4. Glossary

Logo interpreter A program that understands the Logo programming language. It can execute instructions one at a
time as you enter them at the command prompt, and it can also execute lists of instructions saved as programs. The
pretend "turtle" used to draw graphics in Logo makes it easy to have fun with this programming language without
knowing too many different commands.

loop A list of instructions that get repeated in a program. They may get repeated for a set number of times or they
may get repeated as long as while a certain condition istrue.

monitor The glowing screen attached to your computer that shows what's going on. It looks like atelevision set.

operating system A special program that starts up as soon as you turn on a computer. You can't do anything else
with the computer until the operating system is up and running. When you click an icon on your screen or pick
something on a menu to start up a program, you're actually telling the operating program to start that program up.
When you send a picture or a story to the printer, you're really telling the operating system to send it to the printer.

operation In Logo, a specia word, or procedure, that outputs a value to be used by something else—usualy by a
command, but sometimes by another operation. (If it's used by another operation, there has to be a command some-
where in the instruction using the result of all this outputting.) Compare the definition of command.

output Information coming out of a computer. It might come out onto your monitor screen, or onto your printer, or
out of a speaker attached to your computer, or out over a phone line hooked up to another computer. Compare the
definition of input.

parameters ("puh-ram-ih-terz") Pieces of information that certain procedures need to do their job, like the number
that you put after af or war d command. Logo calls these inputs, but other programming languages call them pa
rameters.

predicate ("pred-ih-kit") A Logo operation that lets you figure out whether a certain condition is true or false.
They'revery handy ini f statementsand whi | e loops.

procedure ("pro-seed-jer") Nearly all of the special words that mean something in the Logo programming lan-
guage are procedure names. There are two kinds of procedures: commands and operations. Logo comes with its
own built-in procedures (for example, commands such as f or war d and make and operations such as r ead\Wor d
and r andom) and you can write your own new ones.

program A list of instructions that are saved together and named. That name becomes a new procedure in Logo,
and someone can execute that procedure just like they can execute the procedures that are already a part of Logo.

programming language A language for giving instructions to a computer. Each programming language, like each
spoken language, has its own vocabulary (the list of words that it knows) and grammar (the rules for putting those
words together). Different programming languages are good at different things; Logo is famous for being a good one
for kidsto start with because it's so much fun.

prompt See command prompt.

scientific notation A special way of writing numbers that scientists and mathematicians use to write very big or
very small numbers.

scrolling Usualy, this describes what happens when all the text on a screen moves up on the screen, just asif it was

Logo for Kids 87 copyright 2002 Bob DuCharme

Chapter 4. Glossary

printed on a long scroll of paper and someone rolled up the top of the scroll a little and unrolled the bottom of the
scroll alittle.

single quote A term that programmers often use for the apostrophe character ('). It's on the same key as the double
quote.

sour ce code See code.

string A word, a phrase, or any "string" of characters that is just supposed to be characters and not a number to do
math with or some other special type of data. "hello" and your phone number and even a group of spaces (* ") are
all strings.

text editor A program that lets you edit text files. Many text editors have special features that make it easier to edit
program sour ce code.

text files A file that's not abinary file. A text file is usualy made up of letters, numbers, and symbols that you type
on your keyboard. Text files can be read by all kinds of programs on al kinds of computers. Unlike most binary
files, atext file from one computer can easily be moved to another computer and used there, even if the computer is
running a different operating system. Computer program source code files are always text files.

user The person using a computer program. When programmers talk about users, they're talking about the people
they're creating the program for.

variables ("vair-ee-uh-bulls") Containers for information, usually in a program. Programs can pass variables around
from one command to another, they can look inside them to see what information they store, and they can change
the information inside. It's very common for computer programs to spend much of their time looking inside of vari-
ables, checking the information, and then doing different things depending on what they find there.

Logo for Kids 88 copyright 2002 Bob DuCharme

