

The PUT statement with a string option is the reverse
of a GET statement:

PUT STRING (RECORD) EDIT (NAME,
PAY_NO, �H�O�U�R�S�~�R�A�T�E�)� (A(12),A(7),
P '$$99.99');

This statement specifies the following:
the character value of NAME is to be assigned to

the first 12 character positions of the string vari­
able RECORD

the character value of PAY_NO is to be assigned to
the next 7 character positions of RECORD

HOURS is to be multiplied by RATE, and the val­
ue of the product is to be converted to a charac­
ter string and assigned to the next 7 character
positions of RECORD (this substring comprises
the following characters: a dollar sign or a blank,
a dollar sign or a decimal digit, a decimal digit, a
decimal digit, a decimal point followed by two
decimal digits; any of the digits might be zero)

Record-Oriented Transmission
Record-oriented data transmission deals with data sets
that are composed of a series of separate records. Each
record is read or written as an entity, either into or from
an addressable buffer or into or from a specified vari­
able (usually a structure or an array).

The data transmission statements used in record­
oriented transmission are READ, WRITE, REWRITE,
and LOCATE. Only the READ and WRITE statements
are used when the records are accessed in their physical
sequence from input and output files and are transmit­
ted directly to and from specified variables.

Consider the example:
DECLARE 1 PAYROLL,

2 NAME,
3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),

2 PAY_NO CHARACTER (5),
2 RATE,

(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (3,2);
READ FILE (INFILE) INTO (PAYROLL);

The READ statement causes the record to be read di­
rectly into the structure PAYROLL. There is no conver­
sion of data types to conform to the attributes declared
for the names. The data in the record must exactly
match the declaration of PAYROLL; that is, the first 12
characters (including any blanks necessary to extend
the string to its declared length) must represent the last
name, the next 8 characters the first name, etc. And the
portion of the record that will be assigned to RATE
must be the valid internal representation of fixed-point
decimal numbers. Since there is no conversion, the data
in the record could not be written in character form. A
record of this sort must have been written by a previ­
ously executed program.

56 A PL/I Primer

The following statements might also be a part of the
same program:

DECLARE 1 PAY_RECORD,
2 NAME,

3 LAST CHARACTER (12),
3 FIRST CHARACTER (8),
3 MIDDLE CHARACTER (1),

2 HOURS,
(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (2),
2 PAY,

(3 REGULAR,
3 OVERTIME)

FIXED DECIMAL (5,2);
GET FILE (TIME_CARD) LIST (PAY_RECORD.

NAME, PAY_RECORD. HOURS);
TEST: IF PAYROLL. NAME = PAY_RECORD. NAME

THEN DO;
PAY = HOURS �~� RATE;
WRITE FILE (WAGES) FROM

(PAY-RECORD) ;
END;

ELSE DO;
READ FILE (INFILE) INTO (PAYROLL);
GO TO TEST;
END;

As shown in the example, both record-oriented and
stream-oriented statements may appear in the same pro­
cedure. Assume that the file TI11E_CARD, specified in
the GET statement, represents a data set of punched
cards being read from a card reader. Each card has the
employee's name and the hours worked. The GET state­
ment would cause the data, punched in character form,
to be converted to fixed decimal notation for the data
assigned to HOURS. The WRITE statement, however,
would write the record from PAY_RECORD into the
file WAGES exactly as the data appears in internal stor­
age, presumably for some other program, since the data
in internal format could not be printed directly.

The files referred to in the READ and WRITE state­
ments would have to be declared to have the attributes
RECORD and UNBUFFERED (if neither RECORD
nor STREAM is declared, STREAM is assumed; con­
sequently the file used in the GET statement need not
be explicitly declared to have the STREAM attribute).
The RECORD attribute specifies that the file is to be
used with record-oriented statements. The UNBUF­
FERED attribute specifies that the data need not go into
a buffer, but may be assigned directly to the variable
specified in the INTO clause of a READ statement or
directly from the variable specified in the FROM clause
of a WRITE statement. The files are assumed to be
SEQUENTIAL, that is, files in which records are ac­
cessed in the order of their physical appearance. The
opposite of a sequential file is a direct file, a file in which
each record has an identifying key so that records may

be read or written in any order by specifying the proper
key in the READ or WRITE statement. A direct file
generally must be explicitly declared to have the DI­
RECT and the KEYED attributes. The KEYED at­
tribute declares that each record has a key, and it speci­
fies the number of characters in the key.

1. The implicitly declared file is the standard file
SYSPRI~T; it is both declared and opened as a result
of the PUT statement (line 27).

2. MASTER is declared (line 8) to be an update,
buffered file. It is opened implicitly as a result of the
READ statement (line 14), at which time the SE­
QUENTIAL and RECORD attributes are implicitly
applied. An update file is one that is both read from and
written into. In a sequential update file, each record
that is read is rewritten into the file, with or without
change, before another record is read.

The example in Figure 14 further illustrates record­
oriented data transmission. It is basically the same pro­
cedure UPDATE that is explained in Chapter 3.

Four file names are declared in the example, three of
them explicitly, one implicitly.

1. UPDATE:
2.

3.

4.

5.
6.
7.
8.
9.

10.
11.
12.
13. NEW_RECORD:
14. MASTElLFILE:
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

Figure 14.

PROCEDURE;
DECLARE 1 DETAIL CONTROLLED (N),

2 PAY_# CHARACTER (7),
2 PAYMENT DECIMAL FIXED (6,2),

1 LOAN_INFO CONTROLLED (M),
2 LOAN_# CHARACTER (7),
2 PRINCIPAL DECIMAL FIXED (8,2),
2 RATE DECIMAL FIXED (3,3),

1 STATEMENT CONTROLLED (L),
2 LOAN_INFO,

3 LOAN_# DECIMAL FIXED (7),
3 PRINCIPAL DECIMAL FIXED (8,2),
3 RATE DECIMAL FIXED (3,3),

2 CHARGE DECIMAL FIXED (5,2),
2 PAID DECIMAL FIXED (6,2),
2 NEW_BALANCE DECIMAL FIXED (8,2),

INTEREST DECIMAL FIXED (5,2),
BALANCE DECIMAL FIXED (8,2),
REFUND DECIMAL FIXED (6,2),
MASTER FILE UPDATE BUFFERED,
INPUT FILE INPUT,
OUTPUT FILE OUTPUT;

OPEN FILE (INPUT) RECORD SEQUENTIAL BUFFERED;
ON ENDFILE (INPUT) GO TO MASTEILFILE;
READ FILE (INPUT) SET (N);
READ FILE (MASTER) SET (M);
INTEREST = PRINCIPAL ~ RATE / 12;
IF LOAN_# ,= PAY_#

THEN DO;
PRINCIPAL = PRINCIPAL + INTEREST;
REWRITE FILE (MASTER);
GO TO MASTEILFILE;
END;

IF PAYMENT <= PRINCIPAL + INTEREST
THEN BALANCE = PRINCIPAL + INTEREST - PAYMENT;
ELSE DO;

BALANCE = 0;
REFUND = PAYMENT - PRINCIPAL + INTEREST;
PUT LIST (LOAN_ #, 'REFUND:' ,REFUND);
END;

LOCATE STATEMENT FILE (OUTPUT) SET (L);
STATEMENT. LOANJNFO = LOANJNFO;
CHARGE = INTEREST;
PAID = PAYMENT;
NEW--BALANCE = BALANCE;
LOANJNFO . PRINCIPAL = BALANCE;
REWRITE FILE (MASTER);
GO TO NEW_RECORD;
END UPDATE;

Input/Output 57

3. INPUT is declared as an input £Ie in the DE­
CLARE statement (line 9). When the OPEN statement
(line 11) is executed, the additional attributes REC­
ORD, SEQUENTIAL, and BUFFERED are explicitly
declared.

4. OUTPUT is declared as an output £Ie (line 10).
It is implicitly opened as a result of the LOCA TE state­
ment (line 29), and the RECORD, SEQUENTIAL,
and BUFFERED attributes are implicitly applied.

All four £Ie names are assumed, by default, to be
EXTERNAL names.

The appearance of the CONTROLLED attribute
specification followed by a parenthesized identifier
(lines 2, 3, and 4) contextually declares the associated
structure name to be a based variable and the parenthe­
sized identifier to be a pointer variable.

A based variable is a name used in record-oriented
transmission to describe the attributes of a record in a
buffer. A based variable always has the CONTROLLED
storage class attribute; no storage is allocated for it auto­
matically. A pointer variable, which has the AUTO­
MATIC storage class attribute by default, is used to
point to the location of the buffer that the based variable
describes.

For example, the declaration of DETAIL indicates
that N will point to a buffer into which or from which
records will be read or written, and that each record
will consist of two data items with the same attributes
as those declared for PAY and PAYMENT. When the
READ statement in line 13 is executed, a record is read
from INPUT into a buffer. The second portion of the
statement, SET (N), specifies that the pointer variable
N points to the beginning of the record (in effect, the
value of N is the address of the first storage location of
the buffer). It is as if the record were assigned directly
to DETAIL; a reference to PAY_# becomes a reference
to the first data item in the buffer, a reference to PAY­
MENT becomes a reference to the second data item in
the buffer.

The effect of the declaration of the two other based
variables LOAN_INFO and STATEMENT is the same.
Each is used to describe data of a record as it appears
in a buffer.

The second READ statement causes a record to be
read from the update £Ie MASTER. The pointer vari­
able M is set. If no payment is made, the principal is
compounded and the REWRITE statement (line 19)
causes the record to be written back into MASTER.
There is no need to specify a variable since the RE­
WRITE statement refers to the buffer into which the
record was read. If there is a payment, the REWRITE
statement in line 35 rewrites the updated record in
MASTER.

The LOCATE statement (line 29) does not immedi­
ately cause any transmission of data. As it is written

58 A PL/I Primer

here, it specifies that a buffer, as described by the based
variable STATEMENT, is to be allocated and that L is
to be set to point to the buffer. The assignment state­
ments (lines 30-33) create a new record in that buffer
from the data in the buffer described by LOAN_INFO,
followed by the values of INTEREST, PAYMENT, and
BALANCE. A LOCATE statement also specifies that
data in the indicated buffer will be written automati­
cally immediately before execution of the next LO­
CA TE or WRITE statement that specifies the same £Ie
name or immediately before the specified file is closed.

The assignment statement (line 34) :

LOAN~NFO . PRINCIPAL = BALANCE;

updates the record from MASTER, which is rewritten
by the REWRITE statement (line 35) .

In this version of UPDATE, records of repaid loans
are not deleted from the £Ie. Records cannot be deleted
from an update £Ie that is also a sequential file.

For a program of this sort, however, MASTER could
be a direct file in which records are accessed in any
order. Records can be deleted from or added to a direct
update file.

Assume that MASTER is declared as follows:

MASTER FILE UPDATE BUFFERED DIRECT
KEYED (7);

LOAN-INFO might be declared:

1 LOAN_INFO,
2 PRINCIPAL DECIMAL FIXED (8,2),
2 RATE DECIMAL FIXED (3,3),

The declaration of MASTER specifies that any refer­
ence to MASTER will include a key specification that
is a string of seven characters. The pay number, as a
character string, could be used as the key. The structure
LOAN-INFO is not a based variable; direct files cannot
be buffered.

The READ statement could be:

READ FILE (MASTER) INTO (LOAN_INFO)
KEY (PAY_#);

After the record is read from INPUT, the PAY _ # is
used as a key to find the correct record in MASTER. In
this case, there is no need for the test shown in line 16
in Figure 14; the two records must refer to the same
loan.

NOTE: This would not allow for updating loan records
for which no payment had been made. A different pro­
gram could be written to handle that updating.

The REWRITE statement then would be written as
follows:

REWRITE FILE (MASTER) FROM
(LOAN~NFO) KEY (PAY_#);

The deletion of repaid loan records could be:

IF BALANCE = 0
THEN DELETE FILE (MASTER) KEY

(PAY_#);

Redefining a Buffer

The use of based variables allows operations with data
sets in which format of the records may vary. Consider
the following simple example:

DECLARE 1 FORMAT_l CONTROLLED
(IN_IDENT) ,

2 FORMAT CHARACTER (1),
2 PAY_NUMBER CHARACTER (7),
2 WAGES FIXED DECIMAL (5,2),

1 FORMAT~ CONTROLLED
(IN_IDENT) ,

2 FORMAT CHARACTER (1),
2 PAY_NUMBER CHARACTER (7),
2 WAGES,

3 REGULAR
FIXED DECIMAL (5,2),

3 OVERTIME
FIXED DECIMAL (5,2),

READ FILE (INPUT) SET (IN_IDENT);
IF FORMAT = 'A'

THEN ...

Assume that the first character of the record indicates
the format of the record. If the character is A, it indi­
cates the record matches FORMAT_I; if the character
is not A, it indicates the record matches FORMAT---.2.
When the format of the record is determined, the cor­
responding based variable is used to refer to the con­
tained data items.

Summary
The handling of input and output in PL/I can be done
very simply if only minimum facilities are required. On
the other hand, PL/I provides the facilities for the pro­
grammer to maintain careful and detailed control of all
input and output operations.

This discussion has been primarily concerned with
descriptions of specific examples. For complete details
and specifications see PL/I: Language Specifications,
Chapter 7, "Input/Output."

Input/Output 59

Chapter 12: Expressions and Operations

As discussed previously, any identifier other than a key­
word that appears in a PL/I statement is an expression.
A single variable is an expression, as is a single constant.
Expressions can refer to arrays (array expressions);
they can refer to structures (structure expressions); or
they can refer to single items of data (called scalar
expressions) .

When one or more single expressions appear in con­
junction with operators, the combination is an opera­
tional expression, and its type depends upon the nature
of the operator. For example, an arithmetic expression
is one that involves arithmetic operators.

An operator that precedes the variable or constant
(the operand) is a prefix operator (as with - A or + A) ;
an operator that appears between operands is an infix
operator (as in A + B or A - B).

Arithmetic Operations
Most of the examples of operational expressions dis­
cussed so far in this book have been arithmetic expres­
sions. The arithmetic operators, as noted before are:

+ 4 / 44

Of these, only the plus and minus sign can appear as
prefix operators.

If the operands of an arithmetic expression differ in
base or scale, they are converted to a common base and
scale before evaluation is made. Since the result con­
forms with the attributes of the variable to which as­
signment is made, there is no need to discuss here the
manner in which different operands are converted. A
detailed discussion is included in the publication PL/I:
Language Specifications.

Data operated upon in an arithmetic expression must
have an arithmetic value.

Comparison Operations
There are three kinds of comparison operations: arith­
metic, character, and bit.

The comparison operators are:

< <= 1= >= >

N one of the comparison operators can be a prefix
operator.

Arithmetic comparison involves the comparison of
signed arithmetic values.

Character comparison involves left-to-right, pair-by-

60 A PL/I Primer

pair comparison, according to collating sequence. For
example A> B, B>C, etc. If the operands are of different
lengths, the shorter is extended on the right with blanks.

Bit comparison involves left-to-right comparison of
binary digits. If the operands are of different lengths,
the shorter is extended on the right with binary zeros.

Concatenation Operations
Concatentation operations involve the chaining of char­
acters, with no intervening blanks. The concatenation
operator is II, which is written as two "or" (I) symbols.

If the operands are bit -string, the result is a bit string.
In all other cases, the result is a character string. If the
operands are not bits or characters, they are converted
to characters.

Examples:

If A is 7345 with an implied decimal point between
the second and third digits, and if B is 8923, with an
implied point before the first digit, AIIB would result in
the character string '73.45.8923'.

If C is '0111011' Band Dis' III 'B, the result of AIIB
is '0111011111'B.

IfEis 'ABC' andFis 'DEF',theresultofEIIFis
'ABCDEF'.

Bit-String Operations
Bit-string operations involve the following Boolean log­
ical operators:

I not
& and
I or

The "not" sign always is a prefix operator; the "and" and
"or" signs always are infix operators.

Bit-string operations are performed on a bit-by-bit
basis, from left to right. If operands are not bit strings,
they are converted before the operation is performed;
If the operands are of different bit -string length, the
shorter will be extended on the right with binary zeros.

The following table shows the result of a bit-to-bit
comparison under each possible circumstance:

A A
NOT NOT AND OR

A S A S S B

1 1 0 0 1 1
1 0 0 1 0 1
0 1 1 0 0 1
0 0 1 1 0 0

Consider the fol1owing examples:

A = 'llOI'B; B 'llll'B; e 'OlO'B

I A 'OOlO'B
Ale 'llO1' B

A&B 'llOI 'B
A&e '0100'B

I A&B '0010'B

Order of Evaluation
Arithmetic expressions are evaluated according to the
priority of the operator. Any expression enclosed in
parentheses is evaluated before any other part of the
expression.

Exponentiation ((> (>), prefix + and prefix - have the
highest priority. These operations will be completed
first, and if more than one of these operators appears in
the same expression, they are evaluated from right to
left.

Multiplication ((» and division (/) have the second
priority. They are evaluated from left to right.

Addition (+) and subtraction (-) have the lowest
priority. They are evaluated from left to right.

If any other order is desired, parentheses must be
used to indicate the order. For example:

A 0 B / e 00 D is not equivalent to
(A (> B / e)O# D

A 0 B / e is equivalent to
(A 0 B) / e

A / B + e is not equivalent to
A / (B + e)

Bit -string operations, like arithmetic operations, are
evaluated according to the priority of the operator. The
«not" sign (I) has the highest priority; the «or" sign
([) has the lowest priority. Any expression enclosed in
parentheses is evaluated first. For example:

B I e & D is equivalent to B I (e & D)
I B I e is not equivalent to I (B I e)

Expressions and Operations 61

Chapter 13: Error Control and Program Checking

The IF statement has been shown as one way to check
upon the execution of a program-to avoid errors and to
make certain that the proper action is taken at the
proper time. In UPDATE, discussed in Chapter 3, IF
statements were included to avoid computation of a
negative balance and to ensure that each payment
would be applied to the proper loan record. Another IF
statement was written to delete, from the new master
file, the record of any repaid loans.

Control of many similar conditions of a general nature
is supplied by PL/I. The ON ENDFILE statement in
UPDATE is an example of one of these.

These conditions are situations that the computer has
been engineered to recognize and note, or that the com­
puter is instructed to recognize and note by coding au­
tomatically supplied as part of PL/I.

When one of these conditions arises, normal execu­
tion is halted at that point, and an 'inte1'Tuption occurs.
Control is then transferred to a predetermined group or
block that instructs the computer what action to take.
PL/I supplies a standard system action that is to be
taken when any of the conditions arises. In many cases,
this standard system action results in the printing of an
error message and in complete termination of execution.
In some cases, an error message is printed and execution
continues from the point where execution was inter­
rupted.

Whenever an interruption occurs, standard system
action is taken unless the programmer provides an al­
ternative action with an ON statement.

If an attempt is made to read from a file after the last
record in that file already has been read, the ENDFILE
condition arises. If an illegal data conversion is at­
tempted on character-string data, the CONVERSION
condition arises. If an assignment causes loss of high­
order (leftmost) digits or bits, the SIZE condition arises.

These are but a few of the many conditions that can
be checked. For all of these conditions except SIZE,
PL/I provides constant monitoring to prevent unno­
ticed errors that would affect proper execution of the
program.

The ON Statement
If a programmer specifies action to be taken when an
interruption occurs for a specific condition, his specifi­
cation always overrides the standard system action pro­
vided by PL/I.

ON ENDFILE (INPUT) GO TO MASTEILFILE;

62 A PL/I Primer

This ON statement appears in UPDATE. Standard
system action when any ENDFILE condition arises
is to print an error message and then to terminate exe­
cution of the program. The ON statement in UPDATE
overrides this action, and execution continues until com­
pletion of the procedure.

ON OVERFLOW GO TO ERROR;

The OVERFLOW condition can arise during floating­
point calculations when the exponent of a computed
floating-point data item exceeds the maximum size al­
lowed, as defined for the particular compiler. ERROR
is the label of a statement or the first of several state­
ments that specify what action is to be taken, whether
to try to recover from the error or to note the error and
continue with other computations.

The ON statement is a compound statement that con­
tains another statement. In the above case, GO TO
ERROR is the contained statement, or the on-unit. An
on-unit can be a single statement or a begin block:

ON FIXEDOVERFLOW BEGIN;
DECLARE (ERROR,

TEMP) FLOAT
DECIMAL;

TEMP = TABLE (I,J);
ERROR = TEMP 1'1< 5280;
PUT LIST

(TABLE (I, J), ERROR);
END;

The FIXEDOVERFLOW condition arises when a com­
puted fixed-point data item exceeds the maximum pre­
cision allowed by the particular compiler. Assume that
the programmer suspects that the FIXEDOVERFLOW
condition might arise during evaluation of the decimal
fixed-point expression, TABLE (I,J) ~ 5280. If it does,
control is transferred to the on-unit of the ON FIXED­
OVERFLOW statement. In the begin block, which is
the on-unit, two temporary floating-point variables,
ERROR and TEMP, are declared. The first assignment
statement assigns to TEMP the value of TABLE (I,J)
converted to floating-point scale. The second assign­
ment statement specifies another evaluation of the same
data that caused the interruption, but this time, the eval­
uation is made using floating-point data, with the float­
ing-point result assigned to ERROR. Identification of
the original data item, TABLE (I,J), is written as a
fixed-point number, and the result of the computation
is written as a floating-point number.

When an on-unit is a begin block, control returns
from its END statement to the statement immediately
following the point where the condition arose. Normal

execution continues from there. If the on-unit is a state­
ment that transfers control to some other statement, ex­
ecution will not automatically recommence following
the point where the condition arose.

An on-unit can be a null statement:

ON FIXEDOVERFLOW;

In this cas.e, if an interruption occurs due to the FIXED­
OVERFLOW condition, no action is taken. Control is
transferred to the on-unit, but since it is a null statement
that specifies no action, execution begins again with the
statement immediately following the evaluation that
caused the condition to arise.

Scope of the ON Statement

The point of execution of an ON statement in a pro­
cedure determines the scope of its effectiveness. If a
condition arises before execution of an ON statement
that names that condition, standard system action is
taken. After execution of an ON statement, its effect
holds throughout that block; even if statements that
physically precede the ON statement are reexecuted,
the ON statement is still effective.

More than one ON statement for a specific condition
can appear internal to a single block. A respecification
also can appear in a contained block.

After an ON statement has been executed, its effect
continues through all execution, even if control is trans­
ferred to another external procedure, until one of the
following situations changes the effect:

1. Another ON statement for the same condition is
executed.

2. Control is returned to a block in which another ON
statement or standard system action is in effect.

3. A REVERT statement restores the effectiveness of
another ON statement or standard system action.

A REVERT statement specifying a particular condi­
tion cancels the effectiveness of any ON statements for
that condition that have previously been executed in
the block to which the REVERT statement is internal.
After a REVERT statement is executed, the action to
be taken if an interruption occurs for the specmed con­
dition is the same as it was at the point of invocation of
the block to which the REVERT statement is internal.

. A REVERT statement is ignored unless an ON state­
ment, internal to the same block, has established an
on-unit. Consider Figure 15.

In procedure A, standard system action will be taken
if the FIXEDOVERFLOW condition arises before
statement 2 is executed. After statement 2, the effective
on-unit is CALL AERROR. The ON statement (2) con­
tinues effective until the ON statement (5) in proce­
dure B is executed. When the BEGIN statement is
reached, control passes into the BEGIN block. State­
ment 7 immediately establishes a new on-unit (CALL

I. A: PROCEDURE;

2. ON FIXEDOVERFLOW CALL AERROR;

3. CALL B;
4. B: PROCEDURE;

5. ON FIXEDOVERFLOW CALL BERROR;

6. C: BEGIN;
7. ON FIXEDOVERFLOW CALL CERROR;

8. REVERT FIXEDOVERFLOW;
9. CALL D;

10. ON FIXEDOVERFLOW CALL CERROR;

II. END C;

12. END B;

13. END A;
14. D: PROCEDURE;

15. REVERT FIXEDOVERFLOW;

16. END D;

Figure 15.

CERROR) until the REVERT statement reestablishes
CALL BERROR as the effective on-unit. That on-unit
remains effective throughout the external procedure D
(the REVERT statement is not effective since no ON
FIXEDOVERFLOW statement has previously been
executed in D) .

vVhen the END D statement is executed, control re­
turns to statement 10 in begin block C, which reestab­
lishes CALL CERROR as the effective on-unit. But
when END C is executed, control passes through it to
the next statement in procedure B. The on-unit in state­
ment 5 (CALL BERROR) is reestablished, and it con­
tinues effective until the END B statement is executed
and control returns to procedure A where the first ON
statement remains effective, and if the FIXEDOVER­
FLOW condition arises, the AERROR procedure is
called.

Error Control and Program 63

Condition Prefixes
An interruption for most error conditions of a general
type will occur whether or not an ON statement has
been executed. These conditions are said to be enabled.
An ON statement specifying a particular condition
merely determines the action to be taken when the con­
dition arises; an ON statement has nothing to do with
allowing or not allowing an interruption to occur when
the condition does arise. PL/I, however, allows a pro­
grammer to control certain interruptions. He can dis­
able some conditions that would normally cause inter­
ruptions.

This control is established through the use of condi­
tion prefixes. An enabling condition prefix is a condition
name, enclosed in parentheses, and prefixed to a state­
ment with a colon:

(SIZE): statement

A disabling condition prefix is the same as an enabling
condition prefix, but the characters NO precede the
condition name:

(NOFIXEDOVERFLOW): statement

Blanks are not allowed between the NO and the condi­
tion name.

There are only eight condition names that can appear
in a prefix. They are: FIXEDOVERFLOW, CONVER­
SION, SIZE, OVERFLOW, UNDERFLOW, ZERO­
DIVIDE, SUBSCRIPTRANGE, and CHECK (identi­
fier list). The first four condition names have been de­
scribed previously. The others are described in the fol­
lowing text.

UNDERFLOW. This condition arises when the com­
puted exponent of a floating-point number is smaller
than the permitted minimum, as defined for the partic­
ular compiler.

ZERODIVIDE. This condition arises when an at­
tempt is made to divide by zero, in either a floating­
point or fixed-point computation.

SUBSCRIPTRANGE. This condition arises when a
subscripted name appears in a program and the value
of a subscript is outside the bounds of that dimension
of the array.

CHECK (identifier list). The condition arises when
one of the identifiers of the identifier list is involved in
a statement that is executed. The identifiers can be entry
names, statement labels, or variable names. Standard
system action is: an entry name is printed each time the
block is invoked; a statement label is printed each time
the statement is executed; a variable name and its cur­
rent value are printed each time it is evaluated.

No condition names but these eight can appear in a
condition prefix. All other conditions are always en­
abled and cannot be disabled.

Of the previously listed condition names, only SIZE,
SUBSCRIPTRANGE, and CHECK (identifier list)

64 A PL/I Primer

must be enabled by the programmer. The condition is
enabled if the condition name appears as a prefix to a
statement. For example:

(SIZE): A = B # C;

If the product of B # C is greater than can be expressed
with the precision declared for A, the SIZE condition
will be raised. An interruption will occur, in this case,
since the condition prefix has enabled the condition dur­
ing execution of this statement.

A SIZE condition prefix can be prefixed to any state­
ment. A CHECK (identifier list) prefix can be prefixed
only to a PROCEDURE or BEGIN statement.

(CHECK (PROC_B, TAX, FICA»: PROC-A:
PROCEDURE;

A condition prefix always precedes any statement labels
that are prefixed to the same statement.

Scope of the Condition Prefix

The scope of a condition prefix depends upon the kind
of statement to which it is prefixed. If the condition
name is prefixed to any statement other than a PRO­
CEDURE or BEGIN statement, the condition is en­
abled (or disabled) only through the evaluation and
execution of that single statement. If it is prefixed to an
IF statement, its scope is only through the evaluation of
the expression in the IF clause; it affects neither the
THEN clause nor the ELSE clause. If a condition name
is prefixed to a DO statement, its scope is only through
execution of the DO statement itself; the prefix of a DO
statement has no effect upon any other statements of the
DO group.

If the condition name is prefixed to a PROCEDURE
or BEGIN statement, its scope is through the entire
block, including all nested blocks except for any state­
ments that lie within the scope of another condition pre­
fix in which the same condition is specified differently.

Unlike the scope of an ON statement, the scope of a
condition prefix does not extend to a block that is in­
voked remotely. A condition prefix to a CALL state­
ment has no effect during execution of the procedure
that the CALL statement invokes.

A condition prefix to a single statement overrides the
scope of a prefix of the statement that heads a block. A
condition prefix to the heading statement of any internal
block overrides the scope of a prefix to the heading
statement of an outer block.

If more than one condition name appears in the
same condition prefix, the names must be separated by
commas.

Consider the example shown in Figure 16. In state­
ment 1, the condition prefix enables the SIZE condition
(it is one of the conditions that is not enabled automati­
cally; other conditions, OVERFLOW, for example, are
automatically enabled). If either the SIZE condition or

1. (SIZE): ALPHA: PROCEDURE;
2. ON SIZE CALL AERROR;
3. ON OVERFLOW CALL OVERROR;

4. CALL BETA;

5. (NOOVERFLOW, NOSIZE): BETA; PROCEDURE;

6. (SIZE): A = BIIC;

7.
(OVERFLOW, SIZE): GAMMA: BEGIN;

8. ON SIZE CALL BERROR;

9. REVERT SIZE;

10. END GAMMA;

11. END BETA;

12. CALL DELTA;
13. END ALPHA;

Figure 16.

the OVERFLOW condition arise during execution of
statements in the procedure ALPHA, an interruption
will occur. The ON statements (2 and 3) specify action
to be taken if these conditions cause an interruption.

The prefix to statement 5 disables both the OVER-.
FLO\i\T condition and the SIZE condition (both nor­
mally would have been enabled, since the procedure
BETA lies within the scope of the condition prefix in
statement 1). The condition prefix in statement 6 over­
rides the prefix of the heading statement and enables an
interruption for the SIZE condition during evaluation
and execution of the assignment statement. Note that
although the scope of the prefix of the ALPHA heading
statement has been overridden, the scope of the ON
statement (statement 2) is not affected by the change
in the scope of the prefix for the same condition.

The prefix to the GAMMA: BEGIN statement re­
enables both conditions, cancelling the scope of the pre­
fix of the BETA: PROCEDURE statement. Although
the action to be taken changes if an interruption for
SIZE occurs during execution of GAM~1A, there will
be an interruption if the condition arises; the change in

scope of the ON statement does not affect the scope of
the prefix.

When the END GAMMA statement is executed and
control returns to BETA, the OVERFLOW and SIZE
conditions are again disabled, to remain so until con­
trol returns to ALPHA.

When statement 12 is executed, the DELTA procedure
is invoked. None of the effects of a condition prefix is
transferred to DELTA. However, the effect of each ON
statement (statements 2 and 3) continues into DEL T A
until another ON statement for each condition is exe­
cuted.

Summary

A PLjI programmer has, with the ON statement and
the condition prefix, two powerful facilities for program
checking and for controlling errors that might occur
during execution of a program.

The ON statement specifies action to be taken when
an interruption occurs-to recover from an error or to
continue even though an error has occurred. The con­
dition prefix allows a programmer to decide when an

Error Control and Program Checking 65

error would preclude successful completion of his pro­
gram,

The scope of an ON statement and the scope of a
condition prefix follow two different rules.

The scope of an ON statement continues through the
program until another ON statement for the same con­
dition is executed. The scope of a condition prefix to a

66 A PLII Primer

heading statement continues through the external
procedure until another condition prefix is effective.

In some cases (as in procedure BETA), the scope
of an ON statement specifying action to be taken in
case of an interruption can extend through blocks
during which the occurrence of an interruption is
precluded.

Except for certain restrictions, the characters that make
up the 48-character set are the same as those that make
up the 60-character set. These restrictions are given
below.

The following characters are not included:
NAME

Percent
Colon

REPRESENTATION

Not
Or
And
Greater Than
Less Than
Break Character
Semicolon
Number Sign
Commercial "At" Sign
Question Mark

%

1

I
&
>
<

,

@
?

The following three characters are replaced as indi­
cated:
SIXTY -CHARACTER SET FORTY-EIGHT-CHARACTER SET

,
% II

NOTE: The two periods that replace the colon must be
immediately preceded by a blank if the preceding char­
acter is a period.

The following operators, as used in the 60-character
set, are replaced in the 48-character set by the indi­
cated alphabetic operators:

Appendix 1: The 48-Character Set

SIXTY -CHARACTER SET

>
>=
1=
<=
<
1

I
&

II

FORTY-EIGHT-CHARACTER SET

GT
GE
NE
LE
LT
NOT
OR
AND
CAT

The above nine alphabetic operators are "reserved" in
the 48-character set; that is, they must not be used as
programmer-specified identifiers.

In each case, one or more blanks must immediately
precede the alphabetic operator if the preceding char­
acter would otherwise be alphameric; also, one or more
blanks must immediately follow if the following char­
acter would otherwise be alphameric. For example, to
indicate the comparison of the variables A6 and BQ2Y
for inequality, one would write A6 NE BQ2Y, but not
A6NEBQ2Y, A6 NEBQ2Y, or A6NE BQ2Y. However,
since the equal symbol is usable, the comparison of
these two variables for equality may be written
A6=BQ2Y.

The break character, commercial "at" sign, and num­
ber sign are not used in the 48-character set and conse­
quently may not be employed in identifiers.

The 48-Character Set 67

Appendix 2: Permissible Keyword Abbreviations

In PL/I, certain keywords can be abbreviated. The ab­
breviations themselves are keywords and are recog­
nized as synonymous in every respect with the full key­
words. The following alphabetical list gives these key­
words and their abbreviations:

KEYWORD

AUTOMATIC
BINARY
CHARACTER
CONTROLLED
CONVERSION
DECIMAL
DECLARE
EXTERNAL
FIXEDOVERFLOW
INITIAL
INTERNAL
OVERFLOW
PROCEDURE
SUBSCRIPTRANGE
UNDERFLOW
ZERODIVIDE

68 A PL/I Primer

ABBREVIATION

AUTO
BIN
CHAR
CTL
CONY
DEC
DCL
EXT
FOFL
INIT
INT
OFL
PROC
SUBRG
UFL
ZDIV

Index of Definitions

ADDRESS 6 IDENTIFIER 12
ALPHAMERIC 11 INFIX OPERATOR 60
ARGUMENT 47 INSTRUCTION . 5
ARRAY .. 41 INTERNAL BLOCK 29
ASSEMBLER 6 INTERNAL NAME 35
ASSEMBLY LANGUAGE 6 INTERNAL TO 36
ASSIGNMENT 10 INVOCATION 29
ATTRIBUTE 17 KEYWORD 12
BEGIN BLOCK 37 KNOWN 34
BINARY NOTATION 10 LABEL .. 6
BIT ... 10 LEVEL NUMBER 40
BLOCK .. 17 LOOPING 8
BOUNDS 41 MACHINE LANGUAGE 5
COMPILER 10 MACRO INSTRUCTION 9
COMPOUND STATEMENT 15 NAME .. 34
CONCATENATION 60 NESTING 25
CONSTANT 12
CONTAINED IN 29

OB]ECTPROGRAM 7
OPERATION CODE 6

DATA ... 12 OPERATOR 60
DATA LIST 51 PADDING 23
DATA SET 50 PARAMETER 47
DATA STREAM 50 POINT OF INVOCATION 29
DECISION 15 PRECISION 20
DEFAULT 4 PREFIX
DEFAULT PRECISION 21 CONDITION 64
DIMENSION 41 LABEL 23
DISABLED 64 PREFIX OPERATOR 60
DO GROUP 15 PROCEDURE 17
ENABLED 64 PROGRAM 5
ENTRY NAME 17 PROGRAMMING LANGUAGE .. 5
ENTRY POINT 29 REDECLARATION 35
EXPONENT (OF FLOATING-POINT NUMBER) 19 SCALAR EXPRESSION 60
EXPONENTIATION 10 SCOPE .. 34
EXPRESSION 12 SOURCE PROGRAM .. 7
EXTERNAL NAME 35 STORAGE 6 ..
EXTERNAL PROCEDURE 29 STRING .. 22
FIEI.n ... 6 STRUCI'T~rp.E 39

FILE .. 50 SUBROUTINE 47
FIXED-POINT DATA 19 SUBSCRIPT 41
FLOATING-POINT DATA 19 SUBSTRUCTURE 39

FUNCTION 48 TRUNCATION 21

BITGH-LEVEL LANGUAGE 10 VARIABLE 12

Index of Definitions 69

Index

Activation
of begin block ... 37
of procedure 32ff

Address 6
Alignment of point 20, 21
ALLOCATE statement 31
Allocation 31

automatic 31, 36
controlled 31,58
static 31, 36

Argument
of invocation47
of macro instruction 9
passing of .. 47

Argument list .. 47
Arithmetic data; see Data
Array .. 41,44,47

bounds ... 41
declaration of 41
dimension 41

Array expression .. 43
Assembler 6
Assembly language 6
Assignment 10

multiple 45
Assignment statement 10, 14
Attributes; see also individual attributes 17

factoring of 35, 40
AUTOMATIC attribute .. 31,35

Base attributes 20
Based variable 58
BEGIN statement 37

labeling of .. 38
Begin block .. 37

as ELSE clause 37
as THEN clause 37
as on-unit 62

BINARY attribute 20, 21
Binary data

fixed-point .. 21
floating-point 22
as output ... 51

Binary notation . 10
BIT attribute . 23
Bit .. 10
Bit string data . 23

quotation marks in I/O 52 (footnote)
Bit-string format item 54
Blank 11, 20, 22, 34, 52
Block .. 17
Bounds ... 41
Built-in functions; see Function
BUFFERED attribute 57

CALL statement 29ff, 34
CHARACTER attribute 23
Character setll, 67
Character-string data 22

quotation marks in I/O 52
Character-string format item54
CHECK (identifier list) condition; see ON conditions
COLUMN format item .54
Comma 35, 42, 52
Comment .. 7, 11
Compound statement 15, 17

70 A PL/I Primer

Comparison operations
Compiler
Concatenation.
Conditions; see ON conditions
Constant
Contained in
Contextual declaration; see Declaration
CONTROLLED attribute

with based variable
CONVERSION condition; see ON conditions
Conversion; see Data conversion

..... 50
.10,20,31

... 60

.12
............ 29

.. 31
.58

Data 12
arithmetic 20
collections of 39
label. .23
levels of 12
string .. 22

Data conversion 17, 20, 35, 62
in STREAM transmission 50
not done in RECORD transmission 50

Data-directed data fonnat; see Fonnat
Data-directed transmission 52
Data list. 14,51,52
Data set. 50
Data specification 51
Data stream . 50
Da ta transmission 50

record-oriented ... 56
stream oriented 51

Data types 20
DECIMAL attribute 20, 21, 34
Decimal data

fixed-point 21
floating-point 22
sterling 21

Decision 15, 23, 24ff
DECLARE statement 17, 20ff, 34ff
Declaration 17, 34ff

contextual 34
explicit .. 17, 34, 50

with OPEN statement 50
implicit 26, 27, 34, 37 (footnote)
of files 18, 50, 57

Default 4, 26, 34
Default precision 21, 34
DELETE statement 58
Dimension 41
Dimension attribute 41
DIRECT attribute 57
DO statement 15, 26ff, 44
DO group 15, 26ff, 44

incrementation in 26ff, 44
nesting of 27
repetitive execution 26

Edit-directed data fonnat; see Format
Edit-directed transmission 52
ELSE clause 15, 24ff, 37

null ... 25
END statement 15, 17, 26, 29, 31, 62
End of file 16, 31, 62
ENDFILE condition; see ON conditions
ENDPAGE condition; see ON conditions
ENTRY attribute
ENTRY statement

........ 30,34
. 30,34

Entry name
Entry point

primary
secondary ."

Evaluation of expressions
Execution
Exponent (of floating-point numbers)

.17,19,29,32
.. 29
.30

.... 30

.13,61
.... 6,31,34

... 19
............... . 10 Exponentiation ..

Expression 12, 60ff
arithmetic .'
in PUT statement
array
scalar ..
string

....... 12,60

.... 27,51,52
.... 43

. 60
...... 60

structure , ' 41
EXTERNAL attribute
External name; see Name
External procedure

Factoring of attributes; see Attributes

.35

.29

FILE attribute 18, 50
File 14,50

declaration of 18, 50, 57
contextual .. 34
explicit .. 50
implicit50

input 50
opening of 50, 57

explicit 57
implicit . 58

output 50
standard 50
update. 58

File name 14, 50
File specification 51,52
FIXED attribute 20, 21
Fixed-point data 19

binary 21
decimal .. 21

Fixed-point format item 53
FIXEDOVERFLOW condition; see ON conditions
FLOAT attribute .,. 20, 22, 35
Floating-point data 19

binary ... 22
decimal .. 22

Floating-point format item 54
FORMAT statement 55
Format

of data-directed data 52
of edit-directed data 52
of list-directed data 52
of program 17

Format items 53ff
Format list .. 52
FREE statement 31
Function (procedure) 48

built-in .. 48
Function reference 48

GET statement ' 14,51,52
GO TO statement 15, 24, 30, 32

use between blocks 30, 32
with DO groups 28

High-level language . 10

Identifier 12, 34ff
IF statement 15, 24ff

nesting of .. 25
types of 24£

Implicit declaration; see Declaration
Incrementation in DO loop; see DO group
INITIAL attribute 21, 23
INPUT attribute 50

Input/Output
Input file; see File
Instruction

executable
macro
non-executable

INTERNAL attribute
Internal block
Internal name; see Name
Internal representation

in Input/Output
Internal to
Interruption

see also ON conditions
Invocation; see Procedure
KEYED attribute
Keyword

abbreviation of

............ 50ff

5
8
9
8

... 35
.29

5
.. 56

... 36
...... 16,62

Known...

..... 57
.12
.68
.34

LABEL attribute23
Label data; see Statement-label data
Layout of page 55
Length attribute 23
Level number 40
LINE format item 54
LINESIZE option 55
List-directed data format; see Format
List-directed transmission 51
LOCATE statement 56, 58
Machine language
Macro instruction; see Instruction
MAIN attribute

. 5

................. 29

Name ... 17,34
collective 39ff
data 12
external 35
file .. 50
internal 35
qualified . 40

Nesting
of blocks 30

effect on scope 35
of DO statements 27, 35
of IF statements .' 25, 35

Null ELSE ... 25
Null statement 25

Object program 7
ON conditions 62

CHECK (identifier list) 64
CONVERSION 62
disabling 64
enabling 64
ENDFILE 17, Sl, 62
ENDPAGE 55
FIXEDOVERFLOW 62
OVERFLOW 62
prefixes 64
SIZE .. 62
UNDERFLOW 64
ZERODIVIDE 64

ON statement 17,31,62
OPEN statement 50, 58
Openi~g of fil~s; see Files
Operation coae 6
Operators 10,60

arithmetic .. 60
comparison 60
concatenation 60
infix ... 60
prefix .. 60
string .. 60

OPTIONS attribute 29

Index 71

OUTPUT attribute
Output file; see File
OVERFLOW condition; see ON conditions

Padding
PAGE fonnat item
P AGE SIZE option ..
Parameter

. .50

.... 23,52
" .54

. 55

of macro definition 9
of procedure . 47

Parameter list 47
PICTURE attribute 54
Picture characters 54
Picture fonnat item 54
Point alignment; see Alignment of point
Point of invocation 29, 30
Pointer variable 58
Precision attribute 20, 21ft
Prefix

condition ... 64ft
label .. 15, 23, 28
operator; see Operators

PRINT attribute 54
Printing fonnat items ... 54
PROCEDURE statement 17, 29ft
Procedure 17, 29ft

activation of32ft
external . 29
internal . 29
invocation of . 29
invoked .. 29
invoking 29
MAIN 29
termination of . 32ft

Procedure name 17, 29
Program 5,14,29

execution of' 31
Programming language .. 5
PUT statement 14,27,51,52

Qualified names 40
Quotation mark 22, 52

READ statement 56
RECORD attribute 56
Record-oriented transmission 50, 56H
RECURSIVE attribute 36 (footnote)
Redeclaration 35
Remote format item 55
RETURN statement 31, 48
Return

of control 29ft, 62
of a value .. . 48

REVERT statement 63

72 A PL/I Primer

REWRITE statement .. 56,58

Scalar expression; see Expression
Scale attributes 20
Scope34, 37

of condition prefixes . 64
of names 34ft
of ON statement 63

Scope attributes 35
Semicolon

with statements 11, 15, 17
... 52

...... 56
in data-directed transmission

SEQUENTIAL attribute
SIZE condition; see ON conditions
SKIP fonnilt item 54
Source program
Spacing format item

. 7

Standard files
Statement label
Statement-label data
STATIC attribute
Sterling data "
STOP statement
Storage
Storage class attributes
STREAM attribute
Stream-oriented transmission

........... 54
..................... 50

. .15,23,34
..................... 23

......... . .3L36
" " 21

..................... 32
. 6,31

. 31
......................... 56

.. 50, 51H
............. 55 STRING option

String data
Structure

................................. 22
........ . .. 39

declaration of
level number

............................. 40

Structure expressions
Subroutine
Subscript ..

variables as
Substructure
SYSIN
SYSPRINT

......... 40
.............. 41

........ "47
.... 41

. 43
. 39

....................... 50

....................... 50

Termination of blocks " 32ft, 37
THEN clause ... , 15, 24«, 37
Truncation 21, 22ff
UNBUFFERED 56
UNDERFLOW condition; see ON conditions
UPDATE attribute 57
Update file 57, 58

Variable 12,200
as subscripts 43

WHILE clause 27
WRITE statement 56

ZERODIVIDE condition; see ON conditions

