
SGML for Windows NT

Setting up a free SGML/XML editing and
publishing system on the Windows platform

Markus Hoenicka
hoenicka_markus@compuserve.com

SGML for Windows NT: Setting up a free SGML/XML editing and publishing system on the Windows
platform
by Markus Hoenicka

Copyright (c) 2000 Markus Hoenicka.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or

any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover

Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Revision History

Revision 3.02 02-02-04
Various bugfixes
Revision 3.01 02-01-18
Updates for Emacs, PSGML, AucTeX
Revision 3.00 01-10-4
XML
Revision 2.13 01-3-7
Updates for PSGML, AucTeX, JadeTeX, OpenJade
Revision 2.12 00-10-24
GNU Free Documentation License
Revision 2.11 00-10-20
New Emacs directory layout, Cygwin, new JadeTeX instructions
Revision 2.10 00-4-28
Fixed links for Ghostscript and Ghostview
Revision 2.09 00-3-7
Update for Emacs 20.6, OpenJade 1.3, Ghostscript 6.01, Ghostview 2.9, fixed some broken links
Revision 2.08 00-2-10
Update for PSGML 1.2.1, Emacs 20.5.1, AucTeX 9.10p
Revision 2.07 99-9-7
Fixed AucTeX-related problems
Revision 2.06 99-8-22
Update for Emacs 20.4.1 and MiKTeX 1.20d
Revision 2.05 99-7-27
fixed the glitch in selecting the stylesheet with the DSSSL-File Options dialog
Revision 2.04 99-7-26
fixed the psgml-jade installation bug; extended the dvips config; fixed dependency on the config.ps in PSGML-Jade
Revision 2.03 99-7-21
just another bugfix, at increasing frequency?
Revision 2.02 99-7-18
another weekly(?) bugfix release
Revision 2.01 99-7-10
weeded out the initial bugs
Revision 2.0 99-6-30

Table of Contents
Preface...i

I. Preliminaries ..i

1. Introduction..1
What this is all about..1
Who should read this tutorial?..1
Contents in a nutshell...1
System Requirements...2
System Requirements II: Want Cygwin?..2
Let us now praise free software..2

2. Overview: The components...3
Edit texts...3
Validate SGML and XML documents..3
Publish SGML documents..3
Publish XML documents..3

3. Some general remarks on installation procedures..5
Administrator privileges...5
Set environment variables...5
Installation paths...5
How to use archives..6
How to use the code snippets...6

II. Common components...7

4. Emacs...8
Get the files...9
Emacs installation...9
Gnuserv installation..10
Ghostscript/Ghostview installation...11
The first steps with Emacs..12
Further Reading..12
Summary...13

5. PSGML and TDTD..14
Get the files...14
Install PSGML..14
Install TDTD..17
The first steps with PSGML...18
Further Reading..19
Summary...19

6. TeX...21
Get the files...22
Install TeX..22
The first steps with TeX..24
Further Reading..24
Summary...25

iii

III. SGML processing ..26

7. OpenJade and onsgmls...27
Get the files...27
Install OpenJade and the OpenSP suite..27
The first steps with OpenJade and onsgmls..28
Further Reading..30
Summary...31

8. IDE helpers..32
Get the files...32
Install PSGML-Jade...32
Install PSGML-DSSSL..33
Install AucTeX..34
The first steps with the SGML IDE..36
Further Reading..36

9. DocBook and HTML document type definitions...37
Get the files...37
Some general remarks on DTDs and catalogs..37
Install the HTML DTDs...39
Install the DocBook SGML DTD...42
Install the DocBook DSSSL stylesheets...43
Install the ISO entity sets..43
Install Perl...44
The first steps with the HTML DTDs...44
The first steps with DocBook...44
Further Reading..45

IV. XML processing...47

10. xslide..49
Get the files...49
Install xslide..49
The first steps with PSGML and XSlide..50

Write an XML document with PSGML..50
Writing an XSLT stylesheet with xslide...51

Further Reading..52
Summary...52

11. xsltproc: a XSLT engine in C...53
Get the files...53
Install xsltproc..53
The first steps with xsltproc..53
Further reading...54

12. Saxon, XT, Xalan: Java-based XSLT engines..55
Get the files...55
Install the Java Runtime Engine...55
Install the XP and XT Java classes...56
Install the Xerces and Xalan Java classes...56
Install the Saxon and Ælfred Java classes..56
The first steps with the Java-based tools...56
Further Reading..57

iv

13. Creating printable output...58
Get the files...58
Install FOP..58
Install JFOR..58
The first steps towards printable output..58
Further Reading..59

14. DocBook XML DTD and XSLT stylesheets..60
Get the files...60
Install the DocBook XML DTD...60
Install the DocBook XSLT stylesheets...61
The first steps with DocBook...62

Create a document...62
Create HTML output...62
Create printable output..62

Further Reading..63

V. Concluding remarks ...65

15. Cleaning up..66
16. What if..67

A. GNU Free Documentation License..68

0. PREAMBLE..68
1. APPLICABILITY AND DEFINITIONS ..68
2. VERBATIM COPYING...69
3. COPYING IN QUANTITY...69
4. MODIFICATIONS...70
5. COMBINING DOCUMENTS...71
6. COLLECTIONS OF DOCUMENTS..71
7. AGGREGATION WITH INDEPENDENT WORKS..72
8. TRANSLATION..72
9. TERMINATION...72
10. FUTURE REVISIONS OF THIS LICENSE...72
How to use this License for your documents...73

v

List of Tables

vi

Preface
Printed documents tend to get outdated. If your paper copy has collected quite a lot of dust on the cover,
you might want to check the following website for an update:

SGML for Windows NT (http://ourworld.compuserve.com/homepages/hoenicka_markus/ntsgml.html)

i

I. Preliminaries

Chapter 1. Introduction

What this is all about
SGML is a powerful metalanguage for writing markup texts. Regardless of whether you plan to develop
your own SGML applications or simply plan to use existing ones, a few software components are
required to edit and publish SGML documents. SGML sources are not meant to be read by humans
directly (except the authors, of course), and publishing just means to convert the sources into a
human-readable form of any kind. Commercial solutions are available for Windows NT, but they are
expensive. Most Linux distributions contain a variety of SGML-related tools (I use and recommend
Debian (http://www.debian.org), see the Debian SGMl/XML Howto
(http://www.debian.org/~bortz/SGML-HOWTO/potato/howto.html)). Fortunately, all important SGML
tools are available in Windows versions too, and moreover, they are available for free somewhere on the
web. This tutorial describes my own setup of an useful selection of SGML tools on a Windows NT 4.0
box.

XML is a somewhat simplified version of SGML and has received a great deal of attention in the web
business. XML is less intended as a replacement for HTML, although modern browsers can display
XML files. Instead it is well suited for the exchange of data through the net and as a means to create
HTML from XML just in time, a process that would be too slow for SGML documents. As XML is
essentially a subset of SGML (with a few caveats), many SGML applications can process XML
documents as well. To make best use of your XML documents, this tutorial presents a selection of
dedicated XML software as well.

Who should read this tutorial?
This tutorial is clearly aimed at people who don’t have any experience with SGML or XML so far.
However, by cross-reading it should also be helpful for the SGML geek who, for whatever reason, needs
to quickly set up a free SGML/XML system on a Windows NT computer.

Contents in a nutshell
The next chapter contains a brief overview over the steps of writing and publishing SGML and XML
documents. You will see what the components of the system are good for in the whole process. The
whole matter is dealt with in three parts: The first part is about all those pieces of software that you need
for both SGML and XML. The second and third part talk about software more or less specific to SGML
and XML, respectively. The matter is subdivided into self-contained topics, which allow you to advance
in small steps and to control your progress with simple examples and exercises.

Note: You should browse the whole tutorial to get an understanding of what you actually need. If you
use only SGML or only XML, you can leave the XML or the SGML part out, respectively. You may of
course install everything which is suggested in the individual chapters, but you can always opt to
leave things out. As an example, there are several ways to create printed output from SGML and

1

Chapter 1. Introduction

XML documents. The path through TeX is the most versatile, but requires some work to set up. If you
are content with RTF output, you can just leave everything TeX-related out.

System Requirements
The software described below will run on Windows NT or Windows 95/98/ME. Windows 2000 and
Windows XP are expected to work as well, but they were not tested. Installation on Windows 95/98/ME
needs a few modifications of the installation procedure. This will be pointed out where necessary. The
installed software occupies about 70 MB hard disk space. This may be considerably more if you use a
FAT file system on a large harddisk instead of NTFS due to larger cluster sizes (consider partitioning the
disk in this case). The memory size and CPU speed requirements are not extraordinary, I once ran the
system on a Pentium 100 with 32 MB RAM and Windows NT 4.0 SP3 without problems. But I have to
admit that especially OpenJade benefits noticeably from more RAM.

System Requirements II: Want Cygwin?
This tutorial actually comes in two flavours. The possibilities with the system as well as the installation
instructions differ quite a bit depending on whether or not you want to use the Cygwin tools.

For starters, the Cygwin tools (http://www.cygwin.com) are a collection of GNU tools and a DLL which
translates Unix-style system calls to native Win32 functions. This adds a POSIX layer on top of Win32
with a look and feel like any run-of-the-mill Unix or Linux. The most prominent change may be that you
can use real shells like bash or csh instead of the limited Win32 shells (a.k.a. MS-DOS in Win9x). Shell
scripts can simplify almost any complex task that you will be facing in the realm of SGML processing.
There are Win32 users who consider the Cygwin Tools as “essential”. I strongly encourage you to use
the Cygwin tools to simplify SGML processing. However, if you can’t stand the Unix way of computing,
you will want to stick with the native Win32 version of this tutorial.

This is the version without the Cygwin Tools. If you need the other flavour of this tutorial, visit the
SGML for NT homepage (http://ourworld.compuserve.com/homepages/hoenicka_markus/ntsgml.html).

Let us now praise free software
Setting up a free SGML editing and publishing system would not be possible without those programmers
who release free software on the web. We should not take it for granted that we can obtain versatile,
rock-solid, non-crashing software with full support through the Usenet or mailing lists, with the program
sources and a license which entitles everybody to modify and improve it, at no cost. Many, many kudos
to all those who make this possible.

2

Chapter 2. Overview: The components
This chapter briefly introduces the components that make up the complete system. The following
chapters provide detailed installation instructions, and each chapter contains the exact download
locations for the components.

Edit texts
Obviously we’ll have to write or edit some kind of text if we want to create and publish SGML or XML
documents. We will use the NT port of GNU Emacs. This is one of the most remarkable and versatile
pieces of software, which can do anything you may think of except maybe preparing coffee. We will
adapt and use it to edit SGML and XML source documents (using Lennart Staflin’s PSGML mode),
document type definitions (using Tony Graham’s TDTD mode), DSSSL stylesheets, XSL stylesheets,
and of course the editor’s own configuration files. Moreover, we will use it as a kind of IDE by turning it
into a frontend for the command-line utilities which do much of the work behind the scenes.

Validate SGML and XML documents
One of the strengths of SGML is the possibility to validate a document, that is to let a piece of software
called a parser check the document whether or not it complies with a given DTD. We will use NSGMLS
from James Clark’s SP suite as a validating parser. This parser will work just fine for XML documents as
well.

Publish SGML documents
There are several possiblities to publish (that is, convert to a human-readable form) SGML documents.
The Document Style Semantics and Specification Language (DSSSL) is one of these methods to apply
some kind of formatting rules to a SGML document. Jade, another piece of software written by James
Clark, is the DSSSL application of choice for us. Jade is a modular application which can use several
backends to create the kind of output that we need. Jade can create RTF (Rich Text Format, a sort of
interchange format which is understood by most Windows and some Unix word processors), TeX
(Donald Knuth’s famous layout and typesetting engine), and MIF (FrameMaker format) output. It can
also perform SGML-to-SGML transformations which can be used to create HTML output.

In the case of RTF, MIF, and HTML output, this is all you need. In the case of TeX output, we’ll need a
complete TeX system including the TeX interpreter itself, a previewer, and tools to convert the TeX
output to PostScript or PDF format. We’ll use a Win32 port of the TeX system called fpTeX. As
PostScript is a useful cross-platform file format, we’ll also need a software to preview these files. The
GhostScript and GhostView utilities also allow to print PostScript files on a variety of non-PostScript
printers.

3

Chapter 2. Overview: The components

Publish XML documents
While it would be possible to use a DSSSL engine for this purpose, XSL and XSLT are far more popular
in the XML field. We will look at a few XML parsers that work as XSLT engines: Using XSLT
stylesheets, they produce either a HTML representation of the document, or an intermediate XML
document containing “Formatting Objects”. The latter can be further processed by formatting objects
processors to create printable output.

4

Chapter 3. Some general remarks on
installation procedures

This chapter briefly explains some general procedures which will be used throughout the installation.
Please make sure you understand these few topics before you modify your system.

Administrator privileges
On a Windows NT/2000/XP box, all software should be installed with administrator privileges. This
ensures that all users of the computer will be able to use the software without problems. Some packages
won’t install at all without administrator rights. Obviously this does not apply to Windows 95/98/ME, as
with these operating systems every user is allowed to wreak havoc on the system (Windows ME has
some recovery tools that try to save your buttafter you screwed it up. They kindof sell you a car that
crashes into the guardrails once per mile, but look: you get a toolbox and a rope for free!<Sorry -
couldn’t resist>).

Set environment variables
Environment variables are used by many programs to read in additional information at startup. E.g. the
PATH environment variable tells the shell where to look for executables, thus allowing you to run many
programs without having to specify the full path of the binary.

Windows NT and its successors know two types of environment variables: System variables can be
changed only by the administrator and affect all users, whereas user variables affect only the user who
set them for his own environment. Both are set in the System applet of the System settings group. Select
the "Environment" tab in the pop-up dialog and click on the entry that you want to edit. The present
value of the variable will be displayed in a separate edit field. Change the value or append new values to
the semicolon-separated list. ClickSet (clicking OK alone is not sufficient). To create a new
environment variable, enter a new name into the provided edit field, and set a value as described above.

For Emacs as well as for command line windows, the environment variables are evaluated only once:
when the window is opened first. If you change environment variables as described, they will have no
effect on command line windows that are already open. So to see the effects of added or changed
environment variables, you’ll have to close and reopen any command line windows.

On Windows 95/98/ME, all environment variables are set in theautoexec.bat file with an entry like
set VARIABLE=VALUE . You will have to reboot the computer to let the changes take effect.

Installation paths
Many of the tools that we’ll use come from the Unix world. In Unix commands, a space is a token
separator unless an expression is quoted. Unfortunately Microsoft was so proud of their long filenames in
Windows95 (after every other OS had them since decades) that they didn’t spend much time thinking
how to use them properly. Thus spaces were allowed in paths, screwing up lots of applications from other

5

Chapter 3. Some general remarks on installation procedures

vendors. This general screw-up was neatly achieved by usingC:/Program Files as the default folder
for applications.

Please be warned that it isnot a good ideato use paths with spaces for any of the tools used in this
tutorial. Unless you positively want to shoot yourself in the foot, you should use something like
C:/Programs as your applications folder and avoid all spaces in the subdirectories.

How to use archives
Some packages are provided as.zip files, which can be extracted with pkunzip or any Windows
(un)zipper like WinZip. Be sure to keep the long filenames and the directory information which is
provided in some archives. Others are provided as.tar.gz files. It is a common Unix format based on
an uncompressed tape archive file (.tar) that is compressed in a second step (.gz). Recent versions of
WinZip and possibly other tools support this format. When you open a.tar.gz file using WinZip, the
software will either offer you to open the single.tar archive (simply accept this) or it will ask you to
provide a filename for the single file it detects. Provide a filename with the suffix.tar , and the software
will offer you to open this.tar archive. Then you can proceed as you would with any.zip archive. To
simplify this whole procedure, you should make sure that your browser does not mangle the filename and
replace all but the last dot with underscores in the "Save as" dialog when you download an archive.

How to use the code snippets
In the following chapters you will find a lot of code snippets that you will have to paste into
configuration files. This is best accomplished by copying the code from the HTML version or the SGML
source of this document. Rumors say that copying from PDF does not work reliably.

The sequence of the snippets that go into the_emacs file is not extremely critical. The most important
thing is that the load-path is set correctly at the beginning of the file. If you walk through the tutorial,
starting with a clean_emacs file, and add all relevant snippets to the end of your file, you should end up
with a working configuration file. However, it is very unlikely that a little variety in the sequence would
render your setup unusable, so feel free to experiment a little if you wish.

6

II. Common components

Chapter 4. Emacs
Emacs is the core component of the SGML/XML system. Due to its configurability and extensibility it
will be the SGML and XML document editor and front-end to all related applications, just like an IDE
for a programming language. Emacs is completely different from most other text editors in that it is
basically a Lisp interpreter implemented in C and a whole bunch of Lisp files, which add most of the
functionality.

NTEmacs is a port of GNU Emacs for the 32bit Windows platforms. The user interface retains most of
the features of its Unix counterpart, so it takes some time to get used to it for the average MS Word user.
However, there are quite a few tutorials and an extremely helpful reference card for the most important
commands to get started quickly. There are some important things that you should know right now to
understand what is happening during the installation below.

• Emacs is installed in a set of directories which will be automatically created when unpacking the
archive. The\bin subdirectory holds the executables. The\lisp subdirectory holds all the Emacs
Lisp code which turns Emacs into what it is. The\site-lisp subdirectory is a nice place for the
configuration filessite-start.el anddefault.el (see below).

• Emacs is configured by a set of startup files. As Windows NT is a multi-user system just like Unix,
there are system-wide configuration files as well as user configuration files. When Emacs is started, it
first reads a file calledsite-start.el . This file is meant to hold all the system-wide configuration
data that users may override by their personal configuration files. It next reads the personal
configuration file_emacs of the current user (NTEmacs also accepts the Unix-style.emacs , but you
should be aware that files with a leading dot may be ignored by file-handling software like backup
utilities, thus giving a new meaning to the leading dot as a hiding attribute on Unix systems). This file
should contain personal modifications like color schemes, mail- or newsserver configuration or code to
load specialized packages that other users on the system don’t need. Finally it reads the file
default.el , which can be used for code that users normally should not be allowed to override. If
Emacs doesn’t find any of these files, it starts up with sensible defaults which allow to access the basic
functionality (and this is more than you’d expect).

As the built-inHelp−→Customize feature affects only the_emacs file of the current user, we will
make all configuration changes in this file throughout the whole tutorial. To turn this file into a
system-wide configuration file, it is sufficient to move the contents or part of the contents from this file
to yoursite-lisp.el or default.el afterwards.

• As Emacs reads the startup files only at startup, it is necessary to reload them after they were changed.
The least elegant but safest way to do this is to restart Emacs.

• Due to its Unix heritage, Emacs accepts and sometimes expects path denominators in Unix style with
forward slashes instead of the DOS-style backslashes. If you use backslashes in Emacs Lisp, be aware
that this is a special character: the escape character. You’ll need two consecutive backslashes to get
one in the end, as in DOS-style paths.

• Also due to its Unix heritage, Emacs relies on the presence of a HOME environment variable which
denotes the home directory of the current user. This may be any valid path that the user has write
access to, including directories on network drives. When typing in paths, e.g. upon loading a file, the
home directory can be abbreviated as~.

8

Chapter 4. Emacs

• Emacs uses major and minor modes (defined in an.el /.elc file or in a set of such files) to add
functionality which is not present by default.

• The Emacs Lisp source files (.el) can be byte-compiled (.elc) to increase the speed of execution. To
minimize the archive size, the NTEmacs distribution contains only the byte-compiled versions. To
modify the code or to learn from the code, you will have to download the sources separately.

• Instead of dialog boxes Emacs uses the minibuffer (the last line in the Emacs frame) to display
messages and to enter commands. This command-line has many features in common with Bash (a
widely used Unix shell), e.g. completion with the tab key and a sort of an argument history.

Gnuserv is a small utility which greatly simplifies the use of Emacs. If you associate file types with
Emacs, each double-click on an associated file will start a new copy of the editor, thus wasting time and
memory. Gnuserv allows to open such files in a running copy of Emacs, and it will create a new frame
for the file if you wish so.

Although not directly related to Emacs, we will also install Ghostscript (a PostScript interpreter) and
Ghostview (a graphical frontend for Ghostscript including a previewer) at this point. These tools are
useful to preview PostScript documents and print them on non-PostScript printers. We need this feature
in this and the following chapters to view or print useful help files. At a later stage you will be able to
create PostScript documents from your SGML source documents.

Get the files

1. NTEmacs version 21.1 (ftp://ftp.gnu.org/gnu/windows/emacs/21.1/emacs-21.1-bin-i386.tar.gz). This
contains the precompiled lisp files, but not the Lisp sources. If you want to edit the Lispsourcecode
(or just want to learn from it), you can download the bigger full release
(ftp://ftp.gnu.org/gnu/windows/emacs/21.1/emacs-21.1-fullbin-i386.tar.gz) instead.

2. Gnuserv (ftp://ftp.gnu.org/gnu/windows/emacs/contrib/gnuserv.zip)

3. Ghostscript version 7.00 (ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/AFPL/gs700/gs700w32.exe)

4. Ghostview version 4.0 (ftp://mirror.cs.wisc.edu/pub/mirrors/ghost/ghostgum/gsv40w32.exe)

Emacs installation

1. Unpack the archive

The emacs-21.1 archive contains directory information and long filenames, which both must be
preserved when unpacking the files (see your unpacker help). Unpack the archive to your programs
directory, e.g.C:\Programs . The unpacker will create the directory\emacs-21.1 in your
programs directory with the subdirectories\bin , \etc , \info , \lisp , and perhaps the empty
subdirectories\lock and\site-lisp . To save some typing I suggest to rename the emacs
directory e.g. to\emacs211 .

2. Create the\emacsen subdirectory

9

Chapter 4. Emacs

In order to make future updates of NTEmacs as painless as possible, it is useful to keep all Elisp and
other files that you will add to your basic NTEmacs installation in a separate directory. Therefore
create a sibling of the emacs directory likeC:\Programs\emacsen . The trick is that you can add
and remove future versions of NTEmacs without touching your local add-ons. You can even run a
new version in parallel to your existing version to see whether some of your local add-ons break. In
this new subdirectory, create the subdirectories\bin and\site-lisp .

3. Adjust PATH

Add the\emacs211\bin and\emacsen\bin directories to the PATH environment variable. This
will let you start Emacs from the command line. In the control panel, select the "Environment" tab in
the System dialog. Append the\bin directories, e.g.
c:\Programs\emacs211\bin;c:\Programs\emacsen\bin to the PATH environment variable
(this is a semicolon-separated list of directories) in the system variables panel (the upper one in
WinNT, the lower one in Win2000) and pressSet. Close the dialog by pressingOk.

4. Create HOME

Every user on your NT/2000/XP box has to define an environment variable called HOME. This
variable will let Emacs find the personal_emacs file. Depending on your system, HOME should
point either to a local or a network home directory. The variable is set via the control panel. Select
the "Environment" tab in the System dialog and create HOME in the user variables panel (the lower
one in NT, the upper one in Win2000 - by now you should see the pattern. I’ll leave it as an extra bit
of brain jogging for the XP users to find out where the panel is on their systems). Set its value to the
appropriate directory, e.g.c:\User\myself and pressSet. You can also use
%HOMEDRIVE%%HOMEPATH%as a value for HOME instead. Close the dialog by pressingOk.

If you want to set up Emacs with a system-wide configuration file, set the HOME environment
variable of your administrator account to an appropriate directory. After completing the whole
SGML setup procedure from your administrator account, simply move the contents of the_emacs

in your administrator home directory to one of the system-wide configuration files. This will be
described at the end of this tutorial.

5. Set the load-path

Now you’ll have to make the first customizations to the_emacs file. The variableload-path tells
Emacs where to look for Lisp files. The following chunk of code should be pretty much at the top of
your _emacs file as other packages depend onload-path .

;; append some additional paths to load-path
(setq load-path

(nconc load-path (list "C:/Programs/emacsen/site-lisp"
"C:/Programs/emacsen/site-lisp/psgml-1.2.4")))

Adjust the paths as necessary. You could extend this list of paths for any additional Emacs Lisp
packages that you install.

Note: This code adds the path of the PSGML package that we will install in the next chapter.
Just keep in mind that we already took care of load-path at this point.

10

Chapter 4. Emacs

Gnuserv installation

1. Install gnuserv.el

Extractgnuserv.el from the gnuserv archive and put it into your\emacsen\site-lisp

directory, e.g.C:\Programs\emacsen\site-lisp . Start Emacs and byte-compile the file by
issuingAlt-x byte-compile-file [Return] c:/programs/emacsen/site-lisp/gnuserv.el. This will
creategnuserv.elc .

2. Modify your _emacs

Add the following lines to your_emacs :

(require ’gnuserv)
(gnuserv-start)

3. Install the binaries

Extract the.exe files from the gnuserv archive and put them into your\emacsen\bin directory,
e.g.C:\Programs\emacsen\bin . Restart your Emacs.

4. Associate file types

You can use theView−→Options command in your Windows file explorer to associate file types
with applications. Switch to the File types tab and associate whatever files you want with Emacs.
Enter a command likec:\programs\emacsen\bin\gnuclientw.exe "%1"to the open action
(enclosing the argument in "" helps to prevent problems with filenames that contain spaces). You can
also create an equivalent link in your "Send to" folder which will allow you to open files with
arbitrary (or no) extensions in Emacs with a right-click in the File Explorer.

Ghostscript/Ghostview installation

1. Unpack the archives

Run the filegs700w32.exe . This will start a setup wizard. Enter a reasonable installation directory,
e.g.C:\Programs\Aladdin . All other default settings should be ok. PressNext until the setup is
complete.

Run the filegsv40w32.exe . This will start another setup wizard. Enter an installation directory like
C:\Programs\Ghostgum and pressNext until the setup has finished. You will find a Ghostgum
section in your Start menu which contains the links to the programs. Additionally,.ps and (if you
selected this).pdf files will be associated with Ghostview.

Note: If you intend to create .pdf files from your SGML sources, you probably want to use
Ghostview as the default PDF viewer instead of Acrobat Reader. The latter locks all loaded files,
so you can’t change the sources and re-create the PDFs while they are displayed.

2. Configure Ghostview

11

Chapter 4. Emacs

Run GSView from the start menu. Another setup window will pop up and let you select the
Ghostscript version that you want to use. The dialog box shows all installed versions of Ghostscript.
Select the version 7.00 that you just installed and clickOk. The most recent versions of this program
show a nag screen after startup which urges you to register. You should register if you wish to
support further development of this tool, but the license explicitly does not require you to do so for
noncommercial use.

Next, open theMedia−→Display Settings... dialog and set bothText alphaandGraphics alphato
4. This will result in a more pleasant screen display (it does not affect print output).

3. Adjust PATH

Add the Ghostview dir to the PATH environment variable. This lets you start Ghostview easily from
the command line and simplifies some of the lisp code that we will add later to the startup files. In
the control panel, select the "Environment" tab in the System dialog. Append the Ghostview
directory, e.g.c:\Programs\Ghostgum\gsview to the PATH environment variable in the upper
panel (system variables) and pressSet. Close the dialog by pressingOk.

4. Ghostview configuration

Every NT user will have to performStep 2when she uses GSView for the first time. For the
psgml-jade extension (seeInstall PSGML-Jade) to work properly, every user has to toggle off the
Options−→Save Last Directory menu command in GSView.

The first steps with Emacs
If you have never before worked with Emacs, it is no bad idea to go through the tutorial. Open it by using
theHelp−→Emacs Tutorial menu command. You will learn the most important commands and
shortcuts to use the general features of Emacs.

The Emacs package also contains a reference card. This 6-page document lists all important commands
and shortcuts and is extremely useful until these commands are carved into your brain by constant use of
the program. The Postscript documentrefcard.ps in the \etc subdirectory of your Emacs installation
can be printed using GSView. Double-clicking the filerefcard.ps should launch Ghostview and show
the file after a few seconds. Click on theFile−→Print menu command to open the print dialog box. In
addition to the usual printer selection box you will see a field called “Print Method”. Unless you call a
PostScript printer your own, select “Windows GDI printer” and clickOK.

Now you should be ready to play around a little. Open a few files which are lying around on your
harddisk. Try e.g. C or C++ source files and see what happens (the menu will be extended with a C
option containing useful commands to edit C source files). If you don’t have a C file around, start a new
file from scratch: use the same commandC-c C-f (that is: type c and then f while holding down the
Control key) as for opening an existing file, but provide a location and name of the not yet existing file,
e.g.test.c . Or simply drag and drop just any file on the Emacs window and see that it displays next to
anything you try.

12

Chapter 4. Emacs

Further Reading
The Emacs FAQ for the Microsoft Windows port
(http://www.gnu.org/software/emacs/windows/ntemacs.html), currently maintained by Steve Kemp, is a
very comprehensive FAQ page for installing and using Emacs on the Windows platform.

Charles Curley maintains a page with installation instructions (http://w3.trib.com/~ccurley/emacs.html)
for Emacs.

Additionally, an online manual (http://www.gnu.org/manual/emacs-20.7/emacs.html) (slightly outdated,
though) is available. Manuals about Emacs Lisp are available for online viewing
(http://www.gnu.org/manual/elisp-manual-20-2.5/elisp.html) or for download
(http://paddington.ic.uva.nl/elisp-manual-20-2.5/).

Summary
Now, equipped with a working installation of GNU Emacs and Ghostview on your Windows computer,
you should have learned a few things:

• Open and close files with Emacs, and finally quit Emacs

• Navigate in an Emacs buffer

• Mark, cut, copy, and paste regions of text

• Feel the ease of the command line completion

• View and print Postscript files with Ghostview

13

Chapter 5. PSGML and TDTD
The PSGML major mode allows the Emacs user to create and edit SGML and XML documents. PSGML
is context-aware after parsing the document’s document type definition (DTD). For example, commands
like Markup−→Insert Element offer only those elements or attributes which are allowed at the cursor
position. This makes it much easier to write valid SGML documents, although it does not contain a
validating parser. We will add validating parsers in later chapters of this tutorial.

As HTML is simply one (the best known, though) SGML application, it is tempting to use the PSGML
mode for editing HTML files. We will therefore add some code which derives a HTML mode from
PSGML.

TDTD is another Emacs major mode. This one turns Emacs into a DTD editor. This makes it easy to
author and edit custom DTDs.

Get the files

1. PSGML-1.2.4 (http://www.sourceforge.net/projects/psgml/). Follow the link to the released files and
download the archive file.

2. TDTD (http://www.menteith.com/tdtd/data/tdtd.zip)

Install PSGML

1. Unpack the PSGML archive

Extract the PSGML archive to your common Emacssite-lisp directory, e.g.
C:\Programs\emacsen\site-lisp . Be sure to keep the directory information and long
filenames. This will create the subdirectory\psgml-1.2.4

2. Use onsgmls as an external validator

The following code snippet lets PSGML use onsgmls from the OpenJade distribution (which we will
install later) to validate SGML or XML files . Append this to your_emacs file:

(setq sgml-validate-command "onsgmls -s %s %s")

3. Byte-compile the PSGML files

To byte-compile all.el files in thepsgml-1.2.4 subdirectory, run the command (the "0" is a zero)
Ctrl-u 0 Alt-x byte-recompile-directory [Return] psgml-path , wherepsgml-path is the path to
your psgml-directory, e.g.C:/Programs/emacsen/site-lisp/psgml-1.2.4 .

Note: If you get error messages like "cannot load file xyz" at this point, make sure that your
Emacs load-path contains the PSGML directory. We already included this directory into the
load-path when we installed Emacs.

14

Chapter 5. PSGML and TDTD

4. Enable syntax coloring

Edit _emacs to enable syntax coloring. Copy the following lines to your_emacs file (syntax
coloring code adapted from David Megginson):

;; Turn on syntax coloring
(cond ((fboundp ’global-font-lock-mode)
;; Turn on font-lock in all modes that support it
(global-font-lock-mode t)
;; maximum colors
(setq font-lock-maximum-decoration t)))

;; load sgml-mode
(autoload ’sgml-mode "psgml" "Major mode to edit SGML files." t)

;; in sgml documents, parse dtd immediately to allow immediate
;; syntax coloring
(setq sgml-auto-activate-dtd t)

;; set the default SGML declaration. docbook.dcl should work for most DTDs
(setq sgml-declaration "c:/user/default/sgml/dtd/docbook41/docbook.dcl")

;; here we set the syntax color information for psgml
(setq-default sgml-set-face t)
;;
;; Faces.
;;
(make-face ’sgml-comment-face)
(make-face ’sgml-doctype-face)
(make-face ’sgml-end-tag-face)
(make-face ’sgml-entity-face)
(make-face ’sgml-ignored-face)
(make-face ’sgml-ms-end-face)
(make-face ’sgml-ms-start-face)
(make-face ’sgml-pi-face)
(make-face ’sgml-sgml-face)
(make-face ’sgml-short-ref-face)
(make-face ’sgml-start-tag-face)

(set-face-foreground ’sgml-comment-face "dark turquoise")
(set-face-foreground ’sgml-doctype-face "red")
(set-face-foreground ’sgml-end-tag-face "blue")
(set-face-foreground ’sgml-entity-face "magenta")
(set-face-foreground ’sgml-ignored-face "gray40")
(set-face-background ’sgml-ignored-face "gray60")
(set-face-foreground ’sgml-ms-end-face "green")
(set-face-foreground ’sgml-ms-start-face "yellow")
(set-face-foreground ’sgml-pi-face "lime green")
(set-face-foreground ’sgml-sgml-face "brown")
(set-face-foreground ’sgml-short-ref-face "deep sky blue")
(set-face-foreground ’sgml-start-tag-face "dark green")

(setq-default sgml-markup-faces

15

Chapter 5. PSGML and TDTD

’((comment . sgml-comment-face)
(doctype . sgml-doctype-face)
(end-tag . sgml-end-tag-face)
(entity . sgml-entity-face)
(ignored . sgml-ignored-face)
(ms-end . sgml-ms-end-face)
(ms-start . sgml-ms-start-face)
(pi . sgml-pi-face)
(sgml . sgml-sgml-face)
(short-ref . sgml-short-ref-face)
(start-tag . sgml-start-tag-face)))

;; load xml-mode
(setq auto-mode-alist
(append (list (cons "\\.xml\\’" ’xml-mode))
auto-mode-alist))
(autoload ’xml-mode "psgml" nil t)
(setq sgml-xml-declaration "C:/Programs/OpenJade-1.3/pubtext/xml.dcl")

Use theEdit−→Text Properties−→Display Colors menu command in Emacs to see a list of
supported color values if the colors in the above listing don’t work on your system (or if you simply
don’t like them).

The XML declaration in the last line of the above listing is currently a dummy. We will update this if
necessary when you install the necessary files.

5. Derive a HTML mode

The following code derives a HTML mode from PSGML and was borrowed from the Debian Linux
(http://www.debian.org) PSGML package. Insert the following lines into your_emacs file:

;; define html mode
(or (assoc "\\.html$" auto-mode-alist)
(setq auto-mode-alist (cons ’("\\.html$" . sgml-html-mode)
auto-mode-alist)))
(or (assoc "\\.htm$" auto-mode-alist)
(setq auto-mode-alist (cons ’("\\.htm$" . sgml-html-mode)
auto-mode-alist)))

(defun sgml-html-mode ()
"This version of html mode is just a wrapper around sgml mode."
(interactive)
(sgml-mode)
(make-local-variable ’sgml-declaration)
(make-local-variable ’sgml-default-doctype-name)
(setq
sgml-default-doctype-name "html"
sgml-declaration "c:/user/default/sgml/dtd/html/html.dcl"

sgml-always-quote-attributes t
sgml-indent-step 2
sgml-indent-data t
sgml-minimize-attributes nil

16

Chapter 5. PSGML and TDTD

sgml-omittag t
sgml-shorttag t
)
)

(setq-default sgml-indent-data t)
(setq
sgml-always-quote-attributes t
sgml-auto-insert-required-elements t
sgml-auto-activate-dtd t
sgml-indent-data t
sgml-indent-step 2
sgml-minimize-attributes nil
sgml-omittag nil
sgml-shorttag nil
)

The path in the variable sgml-declaration in the listing above is again a dummy at the moment. We
will adjust this path as soon as all necessary files are installed.

Install TDTD

1. Extract the files

Install the tdtd mode, using the tdtd archive. Unzip the filestdtd.el andtdtd-font.el into your
local site-lisp directory, e.g.C:\Programs\emacsen\site-lisp .

2. Byte-compile the files

Start Emacs and byte-compile the filetdtd.el by typingAlt-x byte-compile-file [Return]
site-lisp-path/tdtd.el [Return], where site-lisp-path is your site-lisp directory. Use the same
procedure to byte-compiletdtd-font.el .

3. Modify your _emacs

Copy the following lines into your_emacs file:

;; Start DTD mode for editing SGML-DTDs
(autoload ’dtd-mode "tdtd" "Major mode for SGML and XML DTDs.")
(autoload ’dtd-etags "tdtd"
"Execute etags on FILESPEC and match on DTD-specific regular expressions."
t)
(autoload ’dtd-grep "tdtd" "Grep for PATTERN in files matching FILESPEC." t)

;; Turn on font lock when in DTD mode
(add-hook ’dtd-mode-hooks
’turn-on-font-lock)

(setq auto-mode-alist
(append

17

Chapter 5. PSGML and TDTD

(list
’("\\.dcl$" . dtd-mode)
’("\\.dec$" . dtd-mode)
’("\\.dtd$" . dtd-mode)
’("\\.ele$" . dtd-mode)
’("\\.ent$" . dtd-mode)
’("\\.mod$" . dtd-mode))
auto-mode-alist))

;; the regexp for NTEmacs etags
(setq dtd-etags-regex-option
"-regex=\’/<!\\(ELEMENT\\|ENTITY[\\t]+%\\|NOTATION\\|ATTLIST\\)[\\t]+\\([^ \\t]+\\)/\\2/\’")

The first steps with PSGML
Now you should have a look at an SGML document with PSGML. We’ll start with a very simple
example provided by Paul Prescod’s DSSSL introduction (seeFurther Reading). This example does not
use an external DTD. The necessary files to resolve links to external DTDs will be added later. There is
no need to understand the syntax of the DTD at the moment, simply type it or copy it to your document.

Note: If you prefer to start with an XML document right away, you may peek ahead to the chapter
about xslide. There you’ll find an XML version of the SGML document described here.

Restart Emacs to apply the latest changes to your_emacs and open a new SGML document: TypeC-x
C-f ~/test.sgmlto create the documenttest.sgml in your home directory (you may as well type the full
path of a file in any other convenient directory). Emacs should load the SGML mode (check the modeline
close to the bottom of the Emacs window). Now type or paste the following DTD into the new buffer:

<!DOCTYPE HTMLLite [
<!ELEMENT HTMLLite O O (H1|P)* >
<!ELEMENT (H1|P) - - (#PCDATA|EM|STRONG)* >
<!ELEMENT (EM|STRONG) - - (#PCDATA) >
]>

As you just have created the DTD, PSGML is not yet aware of it (when you load an existing SGML file,
PSGML will automatically parse the DTD due to a setting in your_emacs file). PressC-c C-p to parse
the DTD now. Check your DTD again if PSGML issues an error.

Now place the cursor at the end of the buffer and start to append the contents of the document to the
prolog. Use the menu commandMarkup−→Insert Element to enter the first element. You will notice
that PSGML offers only one possible element to insert: HTMLLite. Accept this and insert another
element right where you are. This time you will see that you can either insert a H1 or a P element. You
can enter some text between the H1 or P start and end tags. Try to insert another element when the cursor

18

Chapter 5. PSGML and TDTD

is inside the text in a H1 or P element. This will allow you to insert either a STRONG or an EM element,
which again can hold some text. Try also the keyboard shortcut for inserting an element,C-c C-e. You
will be prompted for the name of an element. Either enter the full name of an element, the first letters and
then the tab key, or simply press the tab key twice to see a list of possible tags at the given location. Note
that you don’t have to enter hard returns or to manually indent, PSGML takes care of this.

When you’re done, save your document by pressingC-c C-s. A valid HTMLLite document may look
like this:

<htmllite>
<h1>Character of Constantine</h1>
<p>The person, as well as the mind, of Constantine had been enriched by nature
with her choicest endowments.</p>
<p>His stature was lofty, his countenance majestic, his
deportment graceful; his strength and activity were displayed in
every manly exercise, and, from his earliest youth to a very advanced season
of life, he preserved the vigour of his constitution by a
strict adherence to the domestic virtues of chastity and
temperance.</p>
</htmllite>

You should also have noticed that PSGML performs syntax-highlighting: Start/end tags and other
language-related constructs are shown in different colors to increase readability. Do not delete your test
document yet, because you may wish to reuse it in the next chapter.

Further Reading
Norman Walsh’sDocBook: The Definitive Guideis available as a book at O’Reilly (http://www.ora.com)
and online (http://www.nwalsh.com/docbook/defguide/index.html). The introductory chapter contains an
excellent overview about the concept of SGML.

The PSGML package contains a handbook in Postscript format which you can print using Ghostview.
This is an valuable reference which explains the commands and the variables which you may use for
further customization.

Bob DuCharme has published online a chapter of his SGML book which explains how to write and
modify SGML files using Emacs and PSGML. These 100 pages called “Editing SGML documents with
the Emacs text editor (http://www.snee.com/bob/sgmlfree/emcspsgm.zip)” are an excellent tutorial to
learn and understand PSGML thoroughly.

The TDTD archive containstutorial.txt which covers the editing of DTDs with TDTD.

Summary
Now you should be able to:

19

Chapter 5. PSGML and TDTD

• Write simple SGML documents

• Insert elements or start/end tags

20

Chapter 6. TeX
TeX is Donald Knuth’s famous typesetting software that was born from the inability of the computer
systems of the early ’80 to output anything that comes close to a decent mathematical text. The
typesetting algorithms are derived from long-standing rules in the book printing business, and the default
output looks quite different (read: more pleasant) than any word processor output. Of courseeverything
is configurable. The primary printable output (a DVI file) isdevice-independent, i.e. the printed output
will be the same regardless of the operating system and the printer that you may use (remember that
Windows word processors shift line- and pagebreaks back and forth if you just dare to move from a
300dpi to a 600dpi printer?). Furthermore the system comes with utilities to create Postscript files (the
standard print format on Unix systems) and PDF files (the inofficial standard print format of the web).

TeX is big, completely different from a word processor, and at times unwieldy for the uninitiated. If you
just want to print something somehow, the SGML->RTF conversion or the XML->PDF conversion may
be sufficient. If you look for highest-quality typesetting and easy conversion to platform-independent
formats, you should seriously consider installing TeX.

If you have never before worked with TeX or LaTeX, there are a few things you should know:

• TeX is a markup language just like SGML, but it lacks the strict separation of content and formatting
instructions.

• The TeX system resides in a directory tree which is usually called\texmf . The subdirectories contain
all the binaries, configuration files, fonts, and macros. Additionally, a\texmf-local tree can be
used. This tree holds modified configuration files and format files. This prevents them from being
overwritten if you update the TeX installation.

• Unlike a word processor, TeX does not have a graphical user interface. You type the TeX source text in
whatever editor you prefer. In a later section of this tutorial we will also install a TeX major mode
which turns Emacs into a nice TeX editor. In the case of SGML documents, the intermediate TeX file
will be created by OpenJade’s TeX backend.

• The TeX command-line application interprets the markup instructions of the source document and
creates a.dvi (device independent) output file. This file can be further converted to a Postscript file to
view or print it with Ghostview.

• TeX uses auxiliary files to create tables of contents, lists of figures or tables, and other kinds of
cross-referencing. Therefore you may need up to three passes to get all references right (TeX tells you
whether or not you need an additional pass).

• TeX uses the MetaFont application and font descriptions to generate bitmap fonts on the fly for the
requested font sizes and styles. These bitmap font files remain on the system unless you manually
remove them. Therefore the necessary MetaFont runs will become less frequent or stop after a while.

• Everything that you need for TeX and then some is available at CTAN (Comprehensive TeX Archive
Network). This is a group of servers that provide a plethora of TeX-related files in an identical
directory layout. A list of available mirrors can be found here
(http://www.dante.de/software/ctan/CTAN.sites). A HTML-based search is available at www.dante.de
(http://www.dante.de/cgi-bin/ctan-index).

• The TeX binaries have avery long history and carry a lot of legacy code with them. Among this is the
use of fixed size buffers for various internal things. The size of these buffers is defined in a

21

Chapter 6. TeX

configuration file (web2c/texmf.cnf). Although we start with pretty generous settings it is possible
to hit the limit with very large or very complex SGML or XML files. The error message will tell you
which variable was limiting. You should then increase the value in the configuration file and rebuild
the format files with the commandtexconfig init as shown below.

The probably best known TeX distribution is teTeX. fpTeX is a Win32 version of TeX based on teTeX.

Our customized fpTeX installation contains two macro sets which are necessary to create printable output
from SGML or XML documents through TeX. They will be automatically configured so we don’t have
any extra work to do. Just keep in mind that they are there. JadeTeX is a macro set that complements
Jade’s TeX backend. xmlTeX and PassiveTeX do a similar job for the FO output of XSLT engines.

Get the files

1. TeXSetup.exe (ftp://ftp.dante.de/pub/fptex/current/TeXSetup.exe). This is the install program to
bootstrap your fpTeX installation.

2. ulem.sty (ftp://ftp.dante.de/tex-archive/macros/latex/contrib/other/misc/ulem.sty) and url.sty
(ftp://ftp.dante.de/tex-archive/macros/latex/contrib/other/misc/url.sty). These are two style files
needed by JadeTeX that apparently are not in any of the fpTeX packages.

3. Visit a CTAN server, e.g. ftp.dante.de (ftp://ftp.dante.de), to retrieve some additional TeX-related
files which are not part of the TeX distribution.This is not necessary in most cases, but if you deal a
lot with foreign languages or with functional programming, you may want to have the following
packages (I don’t provide full links here; please use a CTAN mirror and visit the given directories):

• tipa (International Phonetic Alphabet): CTAN:fonts/tipa

• mmasym: Virtual TeX fonts for use with Mathematica 3.0 PostScript fonts:
CTAN:fonts/psfonts/Mathematica 3.0

Install TeX

1. Create the directory structure

In order to do the installation in one fell swoop it is prudent to create the directory structure
beforehand, at least partially. The reason is that we need to provide two additional style files before
the fpTeX installer attempts to build the format files. Create a suitable installation directory
hierarchy likeC:\Programs\TeXLive\texmf-local\tex\latex . Please do not use paths with
spaces unless youwant trouble at some point. You should have a fair amount of free space (up to
300 Mb) on that drive or partition. Copy the two filesulem.sty andurl.sty into the newlatex

subdirectory.

2. Run TeXSetup

Run the fileTeXSetup.exe . This is a wizard-style application that collects all necessary
information from you.

22

Chapter 6. TeX

• Set the fpTeX installation directory according to what you previously created, that is
C:\Programs\TeXLive for the example above. fpTeX will be installed in subdirectories (texmf

andtexmf-local , among others) of this directory.

• On the next page, select “download from internet” and “direct connection”. Clicking next will
start the download process for the current package list which will take only a minute or two.

• Now you should see the package selection page. The essential packages are already selected. For
our purposes you should add a few more. These are:

• tex-extrabin

• tex-fontbin

• tex-fontsextra

• tex-htmlxml

• tex-mathextra

• tex-psfonts

• tex-psutils

• one or more of the tex-langXYZ packages if you need support for languages other than the
standard set.

• Start the file transfer. A cup of coffee may be warranted at this point. At the end of the download
process, the installer will initialize the installation, create the filename databases, and build the
format files. Check the log file for any suspicious error messages.

3. Configure dvips

You’ll probably have to change some settings for dvips for your local site. The settings are stored in
the file config.ps in the\Texmf\dvips\config directory. The following options might need a
change:

• The line starting with M should be modified according to the make and model of the printer that
you use. The file\metafont\misc\modes.mf contains a list of possible values. Remember that
a printer which is not in the list may be happy with the mode of a related printer, e.g. most recent
HP LaserJet printers work just fine with the ljet4 setting, and many other cheap non-HP laser
printers work with the ljet2 setting.

• The line starting with D specifies the resolution of your printer. This always means the physical
resolution, not what some resolution enhancement technology claims to make of the latter.

• The line starting with O (the capital letter, not zero) specifies the horizontal and vertical printer
offsets. These are printer-specific values which can be used to adjust the printout on the paper.
The easiest way to determine these values is to use the filetestpage.tex , which you will find in
the \texmf\tex\latex\base directory. Open a command-line window and change into this
directory. Typelatex testpage.texand answer the questions that appear on your screen. A
testpage.dvi will be created. Usedvips -o testpage.ps testpage.dvito convert this to the
PostScript filetestpage.ps . Now print this file on your printer using GhostView. You will see a
box which should be evenly spaced with a 1 inch margin on all sides. The rulers help you to
calculate which offsets (if at all) have to be specified inconfig.ps to adjust the printout

23

Chapter 6. TeX

correctly. The offsets can be specified ascm, asin, or aspt. In addition, these rulers show you the
printer-specific unprintable area on the edges.

The first steps with TeX
Although there is no need to learn how to write TeX documents in order to turn our SGML or XML
documents into printable output, we should take the time to perform a small test with our TeX
installation at this point. Without TeX being set up properly, the TeX backend will be useless anyway.
Even if you don’t know anything about TeX, simply follow the instructions below.

Start a new TeX file in your Emacs by typingC-x C-f textest.tex. Enter or paste the following lines:

\documentclass[letter]{article}

\begin{document}

\section{X, 34}
For one bitten by true doctrines even the briefest and most familiar saying
is reminder enough to dispel sorrow and fear, for instance:

\begin{verse}
Like as the generation of leaves, even such are the children of men.\\
The wind scatters them on the face of the ground, but others the woodland\\
Brings forth again in its strength and they shoot in the season of spring;\\
Like to them are the children of men, one waxes, another is waning.
\end{verse}

\end{document}

Now save the file by typingC-x C-s. Open a command-line window and change to the directory where
you saved yourtextest.tex file. Now enter the command:

C:\user\myself> latex textest.tex

This should create the filestextest.aux , textest.log , andtextest.dvi , which are an auxiliary
file, a log file, and the formatted document, respectively. View the output by typing:

C:\user\myself> dvips -o textest.ps textest.dvi
C:\user\myself> gsview32 textest.ps &

This should open Ghostview and load the output file. You should see a nicely formatted poem now.

Further Reading
The fpTeX distribution contains an extensive manual in HTML format. See also the documentation files
in the texmf/doc/programs directory of your TeX installation. For further TeX- and LaTeX-related

24

Chapter 6. TeX

information see the LaTeX cookbook (http://star-www.rl.ac.uk/docs/sc9.htx/sc9.html) and the Not so
short Introduction to LaTeX2e (ftp://ftp.dante.de/pub/tex/info/lshort/english/lshort.pdf).

Summary
In this chapter you should have learned the following things:

• Writing a TeX document is not that hard after all, even if you will not have to do this in the context of
our further SGML or XML endeavours.

• Running a TeX file through the tex compiler

25

III. SGML processing
Putting together an SGML processing system is fairly straightforward in the sense that there is not so
much choice. DSSSL is the predominant stylesheet language for SGML transformation, and Jade is the
only sufficiently complete free DSSSL engine (OpenJade is a newer version of Jade with a few
additions). Our task is also simplified by the fact that this DSSSL engine has several backends which
create both HTML and printable output formats.

Chapter 7. OpenJade and onsgmls
Now we are able to create SGML source files with Emacs. PSGML parses the markup and prevents
some, but not all markup errors. Still worse, our documents look as ugly as HTML source files which
nobody will enjoy to read. So on the one hand we need an external validating parser to get validated
SGML documents. On the other hand, there must be a way to create human-readable, formatted output
from our sources. The SP suite written by James Clark contains all necessary tools. NSGMLS is the
validating parser to check our documents. Jade (James’ DSSSL engine) is an implementation of the
DSSSL style language which takes a SGML document (which holds the content) and a stylesheet (which
holds the formatting instructions) as input to either create printable output (using the RTF, TeX, or MIF
backends) or transform it into another SGML document, e.g. HTML (using the SGML backend).

As James Clark does not have any plans for further development of Jade currently, a group of volunteers
maintains newer versions of Jade. To distinguish them from the older version, the tools in the new
releases were renamed to openjade and onsgmls etc., and the whole suite is maintained as two packages,
OpenJade and OpenSP.

Note: As XML is essentially a subset of SGML, it is perfectly possible to use the tools described in
this chapter for XML files as well. It is not uncommon to use onsgmls to validate XML files against a
DTD.

Get the files

1. OpenJade/OpenSP 1.3 Win32 binaries (http://sourceforge.net/projects/openjade). Follow the link to
"OpenJade 1.3 Win32 Bins"

Install OpenJade and the OpenSP suite

1. Extract the files

Extract the OpenJade archive into a suitable directory for installation, e.g.
c:\Programs\OpenJade-1.3 .

2. Adjust PATH

Change the PATH system environment variable to include the OpenJadebin directory. This is done
via the system settings. Select the "Environment" tab in the System dialog, click on the PATH entry
in the upper pane (System variables), and append the path, e.g.
C:\Programs\OpenJade-1.3\bin , to the semicolon-separated list. ClickSet and do not yet
close the dialog.

27

Chapter 7. OpenJade and onsgmls

3. Create SGML_CATALOG_FILES

Create a SGML_CATALOG_FILES system environment variable. This variable tells the SP
applications where to look for catalog files. These catalog files are used to resolve public identifiers
to local filenames. In the Environment tab of the system dialog enter SGML_CATALOG_FILES as
a new variable name in the upper pane. The value of this variable is a semicolon-separated list of
catalog files. Now there is only one catalog to be included, which is provided by the Jade package.
The current directory should be included as well (assuming that the catalog file is calledcatalog ,
which is often the case) as well as the SP catalog file. If you put the catalog file of the current
directory on the first position of the list, you can easily override any system catalogs by simply
providing a catalog file in your document’s directory. You will later modify this variable, when you
install the HTML and DocBook DTDs. Be aware that this variable is not a list of directories that
contain catalog files, but rather a list of the paths of individual catalog files. Set the initial value of
the environment variable e.g. as follows:

.\catalog;C:\Programs\OpenJade-1.3\dsssl\catalog

Individual users can add private catalog files by defining a user environment variable
SGML_CATALOG_FILES which holds the full paths of these catalog files (don’t forget to include
"%SGML_CATALOG_FILES%" in the user’s lists).

The first steps with OpenJade and onsgmls
In this section we will have a brief look at the two tools openjade and onsgmls. At the moment we will
use them by typing commands on the command line. This will give you some understanding about these
tools, but keep in mind that you will be able to run these tools with a few mouseclicks from within
Emacs at a later stage of this tutorial.

At first, we will check whether ourtest.sgml is a valid SGML file. As onsgmls is a command-line
application, first open a NT command-line window. Change to the directory where yourtest.sgml was
saved to and type the following command:

c:\user\myself > onsgmls -s test.sgml

Note: The above command is the simplest possible case that happens to work for us because our
DTD is very simple. In real life, you will have to provide a SGML declaration as the first non-option
argument on the command line (the second argument is then the name of the file you want to
process). Processing XML files requires additional command line switches besides a correct SGML
declaration. Thus for a DocBook SGML document you would run:

c:\user\myself > onsgmls -s \path\to\docbook.dcl test.sgml

And for some XML document you’d have to type:

c:\user\myself > onsgmls -wxml -s \path\to\xml.dcl test.xml

The -wxml switch gives you extended warnings for XML documents, while the -s switch suppresses
the output of the parsed document contents.

28

Chapter 7. OpenJade and onsgmls

This will parse the document and list any errors that it contains. Don’t worry if onsgmls produces no
output on the screen. This Unix-style brevity just means that there were no errors. To see an error
message, change a tag in yourtest.sgml source file, e.g. change a h1 tag to read h and run onsgmls
again.

Before we can try to process our test document with OpenJade, we need a stylesheet for our DTD. We
will use a very simple stylesheet to create printable output from the test file that you created in the
previous chapter. The stylesheet is borrowed from Paul Prescod, just like the DTD. Open a new file with
the nametest.dsl in the same directory as yourtest.sgml and type in or paste the following lines:

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN" >
<style-sheet>
<style-specification>
<style-specification-body>

(element HTMLlite (make simple-page-sequence))

(element H1
(make paragraph
font-family-name: "Times New Roman"
font-weight: ’bold
font-size: 20pt
line-spacing: 22pt
space-before: 15pt
space-after: 10pt
start-indent: 6pt
first-line-start-indent: -6pt
quadding: ’center
keep-with-next?: #t))

(element P
(make paragraph
font-family-name: "Times New Roman"
font-size: 12pt
line-spacing: 13.2pt
space-before: 6pt
start-indent: 6pt
quadding: ’start))

(element EM
(make sequence
font-posture: ’italic))

(element STRONG
(make sequence
font-weight: ’bold))

</style-specification-body>
</style-specification>
</style-sheet>

29

Chapter 7. OpenJade and onsgmls

openjade is a command-line tool, just like onsgmls. Open a command-line window from your start menu.
Change into the directory which contains your test SGML source and your stylesheet. There are some
command-line options (see the fileindex.html in theOpenJade\jadedoc subdirectory), but all we
need to know right now is the -t option to select the backend and the -d option to specify the stylesheet.
We want to create a RTF file from our document, so the command is:

c:\user\myself > openjade -t rtf -d test.dsl test.sgml

openjade should silently create the filetest.rtf in the current directory. Try to open this document
with any RTF-capable word processor (WordPad is sufficient for such a simple file).

Feel free to modify the stylesheet to better understand the effect of the style specifications. Change the
font sizes or the fonts themselves, or change the line spacing. Use the additional Jade command line
option-o output_file to provide a different output filename, e.g.test1.rtf , so you can easily compare
the original output and the output created with your modified stylesheet.

With just a little more effort, we can also utilize the TeX backend and our TeX installation to create
printable output:

C:\user\myself> openjade -t tex -d test.dsl test.sgml

This will create the filetest.tex . This is a LaTeX file which needs some special macros (the JadeTeX
stuff) to be interpreted correctly by TeX. So the command line is:

C:\user\myself> jadetex test.tex

This should create the standard set of.aux , .log , and.dvi files.

Create and view a PostScript document from yourtest.dvi . To this end, type the command:

C:\user\myself> dvips -o test.ps test.dvi

and view the resulting file with:

C:\user\myself> gsview32 test.ps

Alternatively, try to directly create a PDF document by typing:

C:\user\myself> pdfjadetex test.tex

View the PDF file by typing:

C:\user\myself> gsview32 test.pdf

Further Reading
The OpenJade package contains a set of.html help files in theOpenJade\jadedoc subdirectory
which explain the usage and the command-line options of all tools. Henry Thompson prepared a digest
(ftp://ftp.ornl.gov/pub/sgml/WG8/DSSSL/digest.htm) of the somewhat dry DSSSL specification
(ftp://ftp.ornl.gov/pub/sgml/WG8/DSSSL/dsssl96b.pdf). Now it’s also a good time to look at some

30

Chapter 7. OpenJade and onsgmls

introductory texts describing the concept and usage of DSSSL. A good place to start is provided by
Netfolder (http://www.netfolder.com/DSSSL/index.html).

Paul Prescod has compiled a very useful Introduction to DSSSL (http://www.prescod.net/).

Summary
You should have learned the following things now:

• Validate a SGML document using onsgmls

• Create a RTF version from a simple SGML document and its stylesheet using openjade.

31

Chapter 8. IDE helpers
In this chapter we’ll get rid of the need to type strange commands into our command lines and instead
use some Emacs Lisp packages to turn Emacs into an OpenJade and TeX frontend. PSGML-Jade turns
Emacs into an OpenJade frontend, providing an alternative to the command-line interface of the
publishing tools. AucTeX is a package which turns Emacs into a TeX editor. Strictly speaking, AucTeX
is not necessary for the SGML system proper, but it will help you to insert some manual pagebreaks into
OpenJade’s TeX backend output if this should be necessary. Finally, PSGML-DSSSL is an Emacs-Lisp
file which allows you to create a skeleton DSSSL stylesheet based upon your current DTD.

Get the files

1. psgml-jade.el (http://ourworld.compuserve.com/homepages/hoenicka_markus/psgml-jade.el)

Note: This file is not identical with a file of the same name on the OpenJade project page at
sourceforge (http://www.sourceforge.net/projects/openjade). Their version seems to be derived
from an older version of psgml-jade.el and does not support Windows. I’ll try to consolidate
these versions as soon as time permits.

2. psgml-dsssl (http://www.megginson.com/Software/psgml-dsssl.el)

3. AucTeX (ftp://ftp.dina.kvl.dk/pub/Staff/Per.Abrahamsen/auctex/auctex.tar.gz)

Install PSGML-Jade

1. Copy and byte-compile the file

Copy the filepsgml-jade.el into your common site-lisp directory, e.g.
C:\Programs\emacsen\site-lisp .

Byte-compile the filepsgml-jade.el by typingAlt-x byte-compile-file [Return]
site-lisp-path\psgml-jade.el [Return], where site-lisp-path is your site-lisp directory. This creates
psgml-jade.elc .

2. Modify your _emacs

Insert the following block of code into your_emacs :

;; load psgml-jade extension
(setq

sgml-command-list
(list

32

Chapter 8. IDE helpers

(list "Jade" "c:\\Programs\\OpenJade-1.3\\openjade -c%catalogs -t%backend -
d%stylesheet %file"

’sgml-run-command t
’(("jade:\\(.*\\):\\(.*\\):\\(.*\\):E:" 1 2 3)))

(list "JadeTeX" "jadetex %tex"
’sgml-run-command nil)

(list "JadeTeX PDF" "pdfjadetex %tex"
’sgml-run-command t)

(list "dvips" "dvips -o %ps %dvi"
’sgml-run-command nil)

(list "View dvi" "windvi %dvi"
’sgml-run-background t)

(list "View PDF" "gsview32 %pdf"
’sgml-run-command nil)

(list "View ps" "gsview32 %ps"
’sgml-run-command nil))

)

(setq sgml-sgml-file-extension "sgml")

(setq sgml-dsssl-file-extension "dsl")

(setq sgml-expand-list
(list

(list "%file" ’file nil) ; the current file as is
(list "%sgml" ’file sgml-sgml-file-extension) ; with given extension
(list "%tex" ’file "tex") ; dito
(list "%dvi" ’file "dvi") ; dito
(list "%pdf" ’file "pdf") ; dito
(list "%ps" ’file "ps") ; dito
(list "%dsssl" ’file sgml-dsssl-file-extension) ; dito
(list "%dir" ’file nil t) ; the directory part
(list "%stylesheet" ’sgml-dsssl-spec) ; the specified style sheet
(list "%backend" ’sgml-jade-backend) ; the selected backend
(list "%catalogs" ’sgml-dsssl-catalogs ’sgml-catalog-files ’sgml-local-catalogs)

; the catalogs listed in sgml-catalog-files and sgml-local-catalogs.
)

)

(setq sgml-shell "C:/Programs/emacs211/bin/cmdproxy.exe")

(add-hook ’sgml-mode-hook ’(lambda () (require ’psgml-jade)))

Adjust the path in the line definingsgml-shellto point to your Emacs/bin directory. Adjust the
path to the OpenJade binary if necessary. Save your_emacs .

33

Chapter 8. IDE helpers

Install PSGML-DSSSL
Copy the filepsgml-dsssl.el into your common site-lisp directory, e.g.
C:\Programs\emacsen\site-lisp . Start Emacs and byte-compile the filepsgml-dsssl.el by
typingAlt-x byte-compile-file [Return] site-lisp-path\psgml-dsssl.el [Return], where site-lisp-path is
your site-lisp directory. This createspsgml-dsssl.elc .

Copy the following lines into your_emacs file:

;; load dsssl support
(autoload ’sgml-dsssl-make-spec "psgml-dsssl" nil t)

Install AucTeX

1. Extract the files

Extract the Auctex archive to your commonsite-lisp directory, e.g.
C:\Programs\emacsen\site-lisp . Be sure to keep directory information and long filenames. A
new subdirectory will be created for the Auctex files.

2. Move tex-site.el

Locate the filetex-site.el in the Auctex subdirectory that was created in the previous step and
move it one level up to the\site-lisp directory in your common Emacs directory.

3. Byte-compile the files

Start Emacs and byte-compile the Auctex subdir by typing (the 0 is a zero)Ctrl-u 0 Alt-x
byte-recompile-directory [Return] C:/Programs/emacsen/site-lisp/auctex-11.10 [Return]. Some
more files are in thestyle subdirectory, so you should also runCtrl-u 0 Alt-x
byte-recompile-directory [Return] C:/Programs/emacsen/site-lisp/auctex-11.10/style [Return].

4. Modify tex-site.el

Edit tex-site.el in the \emacsen\site-lisp subdirectory. Locate the line:

(defvar TeX-lisp-directory "@AUCDIR"
"*The directory where the AUC TeX lisp files are located.")

and replace the string@AUCDIRwith your Auctex directory, e.g.
C:/Programs/emacsen/site-lisp/auctex-11.10 .

Immediately after these lines, insert the following code (modified fromtex.el):

;; Change this to point to the place where the TeX macros are stored
;; at yourt site.
(defcustom TeX-macro-global ’("c:/Programs/TeXLive/texmf/tex/")

34

Chapter 8. IDE helpers

"Directories containing the sites TeX macro files and style files.
The directory names *must* end with a slash."
:group ’TeX-file
:type ’(repeat (directory :format "%v")))

;; The ’TeX-command-list’ (pull-down menu at the top of emacs appearing when
;; emacs is in TeX major mode) consists of the options below.
;; Invoking ’C-c C-c’ in a TeX major mode will run the "LaTeX" command
;; of the command list. (After compiling, errors can be retrieved by
;; invoking ’C-c ‘’ (Control-c accent-gr\‘ave).
;; If no errors occur and if all cross-references are known, a second
;; ’C-c C-c’ will run the ’View’ command of the list.
(defvar TeX-command-list
(list (list "TeX" "tex \\nonstopmode\\input{%t}" ’TeX-run-TeX nil t)
(list "LaTeX" "latex \\nonstopmode\\input{%t}"
’TeX-run-LaTeX nil t)
(list "View DVI" "windvi.exe %d"
’TeX-run-command nil t)
(list "PDFLaTeX" "pdflatex \\nonstopmode\\input{%t}"
’TeX-run-LaTeX nil t)
(list "View PDF" "gsview32.exe %a"
’TeX-run-command nil t)
(list "dviPS" "dvips %d -o %f"
’TeX-run-command nil t)
(list "View PostScript" "gsview32.exe %f"
’TeX-run-command nil t)
(list "BibTeX" "bibtex %s" ’TeX-run-BibTeX nil nil)
(list "Index" "makeindex %s" ’TeX-run-command nil t)
(list "Check" "lacheck %s" ’TeX-run-compile nil t)
(list "Other" "" ’TeX-run-command t t)))

(setq TeX-default-mode ’LaTeX-mode)
(setq LaTeX-command-style ’(("." "latex -src-specials")))
(setq TeX-view-style ’(("^a5$" "windvi %d -paper a5")
("^landscape$" "windvi %d -paper a4r -s 4")
("^epsf$" "gsview32 %f")
("." "windvi -single %d")))

On line 3 of the inserted code the variableTeX-macro-global must point to your local TeX macro
subdirectory (the trailing slash is mandatory).

Close to the bottom of this file you will find the following code:

;;; Try to make life easy for MikTeX users.

(when (memq system-type ’(windows-nt))
(require ’tex-mik))

35

Chapter 8. IDE helpers

Comment out the last two lines by adding a semicolon “;” in front of each line. The advantages of
tex-mik.el or the equivalenttex-fptex.el have been included into the patch that you inserted
manually. This allows to use the code not only on WinNT, but also on Win95/98/ME.

Save the file and then byte-compile the file by typingAlt-x byte-compile-file [Return]
site-lisp-Path\tex-site.el [Return], where site-lisp-Path is the full path of your site-lisp directory,
e.g.C:\Programs\emacsen\site-lisp . This will create the filetex-site.elc .

5. Modify _emacs

Add the following code to your_emacs file to load TeX support at Emacs startup:

;; add TeX-support
(load "tex-site")
(custom-set-variables
’(TeX-expand-list (quote (("%p" TeX-printer-query)
("%q" (lambda nil (TeX-printer-query TeX-queue-command 2)))
("%v" TeX-style-check (("^a5$" "windvi %d -paper a5")
("^landscape$" "windvi %d -paper a4r -s 4") ("." "windvi %d")))
("%l" TeX-style-check (("." "latex"))) ("%s" file nil t) ("%t" file t t)
("%n" TeX-current-line) ("%d" file "dvi" t) ("%f" file "ps" t)
("%a" file "pdf" t)))))

The first steps with the SGML IDE
... will be postponed to the next chapter because we need some more files until we can really work with
the whole system.

Further Reading
An excellent introduction to AucTeX is available as auc-tex.ps.gz
(http://gluon.physics.ucla.edu/info/emacs/auc-tex.ps.gz).

36

Chapter 9. DocBook and HTML document type
definitions

The DocBook SGML DTD and Norman Walsh’s DocBook DSSSL stylesheets are well suited to write
handbooks and other technical documentations (and lots of other stuff too) and publish them either as a
set of hyperlinked HTML pages or as a printable document. What you are reading right now has been
authored using DocBook.

We will install the latest version of the DocBook SGML DTD. If you intend to work with existing
DocBook documents that use older DTDs, you will need to install them as well. The procedure is exactly
the same as outlined below.

Norman Walsh’s DocBook stylesheets contain a Perl script for the generation of an index. Although it
may seem a bit exaggerated to install Perl just to run a single script, there is no way out if you want to
automatically create indices for DocBook documents, and probably you will find more useful scripts to
feed your Perl interpreter with.

The HTML DTDs are also included in this chapter for two reasons. First, they are useful to write HTML
pages that comply with the W3C specifications. Second, most of the necessary files are already on your
harddisk as they are included in the SP suite.

Get the files

1. DocBook SGML DTD (http://www.oasis-open.org/docbook/sgml/4.1/docbk41.zip)

2. DocBook DSSSL stylesheets (http://sourceforge.net/projects/docbook/)

3. DocBook DSSSL stylesheet documentation (http://sourceforge.net/projects/docbook/)

4. ISO entity set (http://www.oasis-open.org/cover/ISOEnts.zip)

5. Perl for Win32 (http://www.activestate.com/ActivePerl/download.html)

Note: It is not necessary to download the HTML DTDs. They are already on your disk if you installed
OpenJade.

Some general remarks on DTDs and catalogs
For first-time users it is often hard to understand how DTDs, catalog files, OpenJade/onsgmls, and
PSGML interact, and to understand what is wrong when they refuse to interact properly. This section
briefly describes the general setup of DTDs, before we will install the DocBook DTD and HTML DTDs
as examples.

When we installed the SP suite, we created an environment variable called SGML_CATALOG_FILES.
This is simply the full path of a catalog file or a list of such full paths. These catalog files map public

37

Chapter 9. DocBook and HTML document type definitions

identifiers of DTDs to actual files that a SGML-processing application can access. It is mainly a matter
of taste whether you use one catalog file or more. Using one catalog file keeps all information in one
place, but it requires more manual work if you add or update DTDs.

In the simple example filetest.sgml that you created initially, we wrote a small SGML document that
carried its document type definition at the beginning of the document file. This is fine for small and
custom DTDs, but it is inefficient if many documents use the same DTD. Therefore SGML allows to
keep the DTDs in separate files and to reference these external files at the beginning of a SGML
document. This reference may look like this:

<!DOCTYPE HTML SYSTEM "html.dtd">

This translates to: The document type of this document isHTML, and the DTD which describes this
document type is available on the local system in a file calledhtml.dtd . It is assumed thathtml.dtd is
in the same directory as the document. This basically works fine, but has one major drawback: These
documents are not easily portable.

The use of catalog files overcomes this limitation. The corresponding prolog may look like this:

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

This translates to: The document type of this document isHTML, and the DTD has the formal public
identifier-//IETF//DTD HTML 2.0//EN. This is where catalog files come into play. It is expected that a
catalog file (accessible via the SGML_CATALOG_FILES environment variable) has an entry which
resolves this identifier to a local file or an URL. The corresponding entry in a catalog file might look like
this:

PUBLIC "-//IETF//DTD HTML 2.0//EN" "html/html.dtd"

This now translates to: The DTD which is referenced with the formal public identifier-//IETF//DTD
HTML 2.0//ENis stored locally in the filehtml.dtd . The exact path of this file is always relative to the
catalog file. In this example the filehtml.dtd can be found in thehtml subdirectory of the directory
that contains the catalog file.

Taken together, the idea of installing a DTD on the local system is to:

1. Put the DTD file(s) in some directory

2. Provide a new or edit an existing catalog file which resolves the identifier to a local file

3. Make the catalog file accessible via the SGML_CATALOG_FILES environment variable.

The procedure described so far will enable openade, onsgmls, and PSGML to access DTDs via catalog
files. Before a DTD can be used, it has to be parsed to create a representation in the memory. This

38

Chapter 9. DocBook and HTML document type definitions

parsing can take quite a long time, which is especially a problem with PSGML: the internal parser is
implemented in the interpreted language Emacs Lisp. Therefore PSGML provides a mechanism to store
a memory representation of a parsed DTD in a separate file and read this instead of the original DTD.
Just as the original DTDs, the pre-parsed DTDs can be accessed via catalog files as well. As only
PSGML uses this kind of DTD, there is no environment variable to locate these catalog files. This is set
in the_emacs file instead. The basic steps to make use of this PSGML feature are:

1. Load a document that uses the DTD (or create a new, empty one) and parse the DTD with PSGML

2. Save the parsed DTD with PSGML into the directory that contains the DTD

3. Create or edit a catalog file (usually calledecatalog to distinguish it from regular catalog files)
which resolves the DTD identifier to the parsed DTD.

4. Modify your _emacs to tell PSGML where theecatalog files can be found.

Now, whenever you open or create a SGML document, PSGML first checks whether a parsed version of
the given DTD exists and uses it if present. If no parsed version exists, it uses the DTD itself and saves a
parsed version for the next time you open a file with this DTD. Whether or not the additional hassle with
ecatalog files pays off depends on the speed of your computer and the size of the DTDs that you use.

Note: This automatic saving of the parsed version may fail if you do not have sufficient access rights.
In that case, you should log in as an administrator and perform the first two steps in the procedure
above for each DTD that you want to access through an ecatalog entry.

We will now go ahead and use this knowledge to install a few useful DTDs.

Install the HTML DTDs

1. Access the DTDs via the menu

PSGML allows to insert the document type declaration via menu commands. To this end, all DTDs
that you want to use this way have to be added to a variable in your_emacs . Insert the following
lines into your configuration file:

;; PSGML menus for creating new documents
(setq sgml-custom-dtd
’(

("HTML 2.0"
"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.0//EN\">")

("HTML 2.0 Strict"
"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.0 Strict//EN\">")

("HTML 2.0 Level 1"
"<!DOCTYPE HTML PUBLIC \"-//IETF//DTD HTML 2.0 Strict Level 1//EN\">")

("HTML 3.2 Final"
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 3.2 Final//EN\">")

("HTML 4"
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\">")

39

Chapter 9. DocBook and HTML document type definitions

("HTML 4 Frameset"
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Frameset//EN\">")

("HTML 4 Transitional"
"<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0 Transitional//EN\">")

("DocBook 4.1"
"<!DOCTYPE Book PUBLIC \"-//OASIS//DTD DocBook V4.1//EN\">")

)
)

Strictly speaking, the last entry does not yet belong here, but we will need it when we install the
DocBook DTD. Just keep in mind that we inserted these lines already at this point.

2. Create the directory structure

Having all DTDs in a separate directory tree simplifies the maintenance greatly. Therefore create a
new \sgml\dtd subdirectory in a directory which has read access for all users on your system, e.g.
C:\user\default . This will be the root directory of all DTDs.

3. Copy the files

Create a subdirectoryhtml and copy all relevant files (html*.* , isolat1.* , andxml.*) from the
OpenJade-1.3\pubtext installation directory into your newhtml subdirectory.

4. Create the catalog file

Open a new catalog file in the same directory using Emacs, e.g. by typingC-x C-f
c:/user/default/sgml/dtd/html/catalog [RETURN]. Insert the following lines:

OVERRIDE YES

PUBLIC "-//IETF//DTD HTML 2.0//EN" "html.dtd"
PUBLIC "-//IETF//DTD HTML 2.0 Strict//EN" "html-s.dtd"
PUBLIC "-//IETF//DTD HTML 2.0 Level 1//EN" "html-1.dtd"
PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 1//EN" "html-1s.dtd"
PUBLIC "-//W3C//DTD HTML 3.2 Final//EN" "HTML32.dtd"
PUBLIC "-//W3C//DTD HTML 4.0//EN" "HTML4-s.dtd"
PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "HTML4.dtd"
PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN" "HTML4-f.dtd"
PUBLIC "-//W3C//ENTITIES Latin1//EN//HTML" "HTMLlat1.ent"
PUBLIC "-//W3C//ENTITIES Special//EN//HTML" "HTMLspec.ent"
PUBLIC "-//W3C//ENTITIES Symbols//EN//HTML" "HTMLsym.ent"

The first line tells a catalog-using application that the public identifier should override any system
identifier. The HTML4 DTDs use URLs as system identifiers for the entity files and thus would need
an internet connection whenever you validate them, but with this little trick they will be just as
happy with the local copies.

As the DTD and entity files are in the same directory as the catalog file, a path is not necessary.
However, if you want to use a single catalog file for all your DTDs and put it e.g. into the
\sgml\dtd directory, you would have to specify the filenames as e.g./html/html.dtd . In the
following procedures I assume that you use several catalog files to simplify the descriptions.

40

Chapter 9. DocBook and HTML document type definitions

5. Register the catalog file

Add the full path of your new catalog file, e.g.C:\user\default\sgml\dtd\html\catalog , to
the semicolon-separated list of your environment variable SGML_CATALOG_FILES. Use the
procedure as described previously.

6. Create your ecatalog file

Create a new file calledecatalog in the same directory as the previous catalog file, e.g. by typing
C-x C-f C:/user/default/sgml/dtd/html/ecatalog [RETURN] in your Emacs. Enter the following
lines into this new file:

PUBLIC "-//IETF//DTD HTML 2.0//EN" "html.ced"
PUBLIC "-//IETF//DTD HTML 2.0 Strict//EN" "html-s.ced"
PUBLIC "-//IETF//DTD HTML 2.0 Level 1//EN" "html-1.ced"
PUBLIC "-//IETF//DTD HTML 2.0 Strict Level 1//EN" "html-1s.ced"
PUBLIC "-//W3C//DTD HTML 3.2 Final//EN" "HTML32.ced"
PUBLIC "-//W3C//DTD HTML 4.0//EN" "HTML4-s.ced"
PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" "HTML4.ced"
PUBLIC "-//W3C//DTD HTML 4.0 Frameset//EN" "HTML4-f.ced"

7. Register your ecatalog file

Put the following lines into your_emacs :

;; ecat support
(setq sgml-ecat-files

(list
(expand-file-name "c:/user/default/sgml/dtd/html/ecatalog")
(expand-file-name "c:/user/default/sgml/dtd/docbook41/ecatalog")

))

Again, the last line is not related to the HTML DTDs, but we will need it later. Restart your Emacs
to let the changes in_emacs take effect.

8. Parse the DTDs

To test-drive the new setup, create a new file in your Emacs with the extension.html , e.g. by typing
C-x C-f c:/user/myself/test.html. This should load PSGML automatically. Now use e.g. the
DTD−→Insert DTD−→HTML 4 menu command to insert the document type declaration into your
test document. PSGML should automatically start to parse the DTD (if not, use theDTD−→Parse
DTD menu command or simply pressC-c C-p). As PSGML finds a corresponding entry in the
registered ecatalog file but no parsed DTD, it will automatically save the DTD asHTML4s.ced in
the \html subdirectory.

If this test was successful, all other parsed DTDs will be generated on the fly whenever you use a
registered DTD for the first time.

Note: On Windows NT/2000/XP, it may be necessary to create the compiled DTDs with
administrator rights (this depends on the access rights of the directories that contain the DTD

41

Chapter 9. DocBook and HTML document type definitions

files). If this is the case on your system, you should repeat the above procedure for all installed
DTDs from your administrator account.

9. Set the SGML declaration

Open your_emacs file and locate the function declaration:

(defun sgml-html-mode()

Within this function, locate the line:

sgml-declaration "d:/user/default/sgml/dtd/html/html4.dcl"

Adjust the path to your local system.

Note: We just set a reasonable default value in _emacs . The declaration you enter here should
match the HTML DTD that you will use most of the time. If it should be the case that you mainly
use e.g. the HTML3.2 DTD, you would rather specify html32.dcl here. Whenever you need a
different declaration than the default, use the menu command SGML−→User
options−→Declaration to set a new value.

Install the DocBook SGML DTD

1. Unzip the files

Extract the contents of the DocBook DTD archive into a new directory in your SGML tree, e.g.
c:\user\default\sgml\dtd\docbook41 . Using the version number in the subdirectory name
simplifies the installation of several versions in parallel (you might need older versions for reasons
of compatibility with older, existing documents).

2. Register docbook.cat

The DTD archive contains a catalog file nameddocbook.cat which must be added to the
SGML_CATALOG_FILES environment variable. Use the procedure as describedpreviously.
Append the full path (including the filename) of the catalog file, e.g.
c:\user\default\sgml\dtd\docbook41\docbook.cat , to the semicolon-separated list.

3. Createecatalog

Use Emacs to create the fileecatalog in the DocBook directory, e.g.
c:\user\default\sgml\dtd\docbook41 . Insert the following line:

PUBLIC "-//OASIS//DTD DocBook V4.1//EN" "docbook.ced"

and save the file.

4. Set the SGML declaration

42

Chapter 9. DocBook and HTML document type definitions

In your _emacs , locate the line:

sgml-declaration "d:/user/default/sgml/dtd/docbook41/docbook.dcl"

and adjust the path to your local system.

Note: We just set a reasonable default value in _emacs . The declaration you enter here should
match the DocBook DTD that you will use most of the time. If it should be the case that you
mainly edit vintage DocBook 3.1 documents, you would rather specify docbook31/docbook.dcl

here. Whenever you need a different declaration than the default, use the menu command
SGML−→User options−→Declaration to set a new value.

Install the DocBook DSSSL stylesheets

1. Unzip the archive

Extract the archive containing the DocBook DSSSL stylesheets into a new stylesheets subdirectory,
e.g.c:\user\default\sgml\stylesheets . This will create a new subdirectorydocbook . If
you already have an older version of the stylesheets in this directory, you may want to rename it to
e.g.db174b (according to the release) before extracting the new version. This makes it easier to
revert to the previous version if you should need to do so.

2. Register catalog

The DocBook stylesheets archive contains a catalog file namedcatalog which must be added to
the SGML_CATALOG_FILES environment variable. Use the procedure as describedabove.

3. Unzip the documentation

Unpack the stylesheet documentation archive into a convenient directory, e.g.
C:\user\default\sgml\doc\dbstylesheets .

Install the ISO entity sets

1. Extract the files

Extract the contents of the ISO entity archive into a new directory in your SGML tree, e.g.
C:\User\default\SGML\ISOents . These standardized entities are referenced by DocBook, but
as they can be shared by other DTDs, it is better to keep them apart from DocBook proper.

2. Modify docbook.cat

The filedocbook.cat that you installed with the DocBook DTD contains the references to the ISO
entities. However, you will have to adjust the paths and the filenames. E.g. modify the following line:

43

Chapter 9. DocBook and HTML document type definitions

PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN" "iso-dia.gml"

to read:

PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN" "../../ISOents/isodia"

Look up all ISO entity files which appear indocbook.cat and modify the entries accordingly.

Install Perl

1. Run the setup program

Run the downloaded executable by double-clicking its icon in the folder. This will run the wizard
which guides you through the installation. Select the options to associate.pl files with the Perl
interpreter and to add the Perl directory to your PATH environment variable.

The first steps with the HTML DTDs
Let us now create a new HTML document. TypeC-x C-f ~/htmltest.html and insert a formal public
identifier via theDTD menu. Now use theMarkup−→Insert Element menu commands and related
commands to build a HTML document. You can preview the document in your browser while editing.
Don’t forget to hit theRefresh button of your browser after changes in the source code. Use the
SGML−→Validate menu command to validate your document against the DTD. Make sure that you use
the correct SGML declaration, e.g.HTML4.dcl if you use one of the HTML4 DTDs.

The first steps with DocBook
Open a new SGML document by typingC-x C-f ~/dbtest.sgml. Insert the DocBook formal public
identifier via theDTD−→Insert DTD−→DocBook 4.1 menu command. Insert some elements into the
document, e.g. starting with the chapter and sect1 tags. Enter some para elements to hold some text.
Validate your document with theSGMLValidate menu command.

Now prepare the system to create printable output from your document. We’ll first do this with Emacs
menu commands, and later on the command line. Use theDSSSL−→File Options−→Jade backend
menu command to select the TeX backend. Use theDSSSL−→File Options−→DSSSL stylesheet
menu command to set the stylesheet. Use the filename completion feature in the minibuffer to select the
file docbook.dsl in the \print subdirectory of the DocBook hierarchy. Now use theDSSSL−→Jade
command to run Jade with the selected options on your document. Use theDSSSL−→Recenter output
buffer menu command to see the Jade stderr output. Except the “DTDDECL catalog entries are not

44

Chapter 9. DocBook and HTML document type definitions

supported” message which is a known limitation of Jade there should be no error messages, and Jade
should exit with a “Jade finished at” message. If no errors occurred, there will be a new filedbtest.tex

in your present working directory.

Note: While the abovementioned DTDDECL warning is a nice indicator that OpenJade does not
hang while processing your 150 kb document, you may find it distracting after a while. To get rid of
this message, scan all your catalog files for lines starting with DTDDECL. Comment these lines out
by adding a “ –– ” (space dash dash space) to the start and the end of the line.

Now use theDSSSL−→Jadetex menu command to run the intermediate TeX file through LaTeX. This
may take some time if new fonts have to be created and is accompanied by a bunch of messages in the
output buffer. You should eventually see a successful message which also tells you how many pages were
created. Use theDSSSL−→View DVI command to displaydbtest.dvi . The curious may load the
intermediatedbtest.tex file into Emacs to see the fancy output of the TeX backend.

Now hit DSSSL−→dviPS to create a PostScript document. Click onDSSSL−→View PS to view the
PostScript documentdbtest.ps with GhostView.

Modify the file options to create HTML output from the same DocBook source. Using the commands
described above, set the OpenJade backend to SGML and set the stylesheet todocbook.dsl in the
\html subdirectory of your DocBook stylesheet hierarchy. Now run Jade again. This will create a set of
HTML files with a file like book1.htm as the starting point.

To process your document on the command line you essentially use the same commands as in the
OpenJadechapter. The main difference is that we need to supply a proper SGML declaration as the newer
DocBook versions do not work with OpenJade’s builtin default declaration. The correct one to use is
docbook.dcl which is part of the DocBook DTD archive. To transform your DocBook document (aptly
nameddocbook.sgml in these examples) into either RTF or HTML, run the following commands:

c:\user\myself > openjade -t rtf -d \path\to\print\docbook.dsl \path\to\docbook.dcl doc-
book.sgml

c:\user\myself > openjade -t sgml -d \path\to\html\docbook.dsl \path\to\docbook.dcl doc-
book.sgml

Further Reading
The DocBook DTD documentation (http://www.oasis-open.org/docbook/documentation/index.html) is
available at OASIS.

Norman Walsh has writtenDocBook: The Definitive Guide, which is available as a dead-tree version
(http://www.oreilly.com/catalog/docbook/) and online
(http://www.oreilly.com/catalog/docbook/chapter/book/docbook.html).

Dave Pawson maintains a DocBook FAQ (www.dpawson.co.uk/docbook/).

If you want to customize the DocBook stylesheets, you don’t want to miss the DocBook stylesheet
documentation (http://sourceforge.net/projects/docbook). These documents also contain a very clear and
concise description of the index creation process with thecollateindex.pl script, see the file

45

Chapter 9. DocBook and HTML document type definitions

indexing.htm . Another good source about stylesheet-related questions is here
(http://www.miwie.org/docbook-dsssl-faq.html).

The Text Encoding Initiative (http://www.tei-c.org) has published a DTD which seems more geared
towards linguistic applications. There is also a somewhat stripped-down version called TEI Lite
(http://www.uic.edu/orgs/tei/lite). Richard Light (with some additions by Jon Bosak) has published TEI
Lite DSSSL print stylesheets
(ftp://sunsite.bcc.bilkent.edu.tr/pub/sun-info/standards/dsssl/stylesheets/tei/tei-dsl.zip), but they don’t
seem to be actively maintained (there are actively maintained XSL stylesheets for the XML version of
the DTD, though).

DSSSL stylesheets for HTML come in handy if you are not satisfied with what your browser prints.
Stylesheets are available for HTML 3.2
(ftp://sunsite.bcc.bilkent.edu.tr/pub/sun-info/standards/dsssl/stylesheets/html3_2/html32hc.zip).

46

IV. XML processing
XML has attracted a far greater number of programmers than SGML, and the result is a nice pool of
applications to choose from (for an overview, see e.g. Lars Marius Garshol’s page about Free XML tools
and software (http://www.garshol.priv.no/download/xmltools/)). One of the reasons is certainly that
XML was specifically designed to be easier to parse than SGML. The downside is that putting together
an XML processing system needs a few decisions upfront. The following chapters will give you a
(necessarily subjective) choice of several XML parsers and XSLT processors with various output types.
You may choose what you need, or install all of them and compare. The table below is intended to give
some guidance.

Note: You should also be aware that most processors implement some sort of extensions to the
standards. Some XSLT stylesheets require specific extensions for some special tricks, e.g. for
chunking HTML output. Consult the documentation of the stylesheets you plan to use to find out
which processor you should prefer.

The main considerations when picking one of the combos are:

• Parser interface: There are two accepted standards for XML parser interfaces: SAX and DOM. The
difference between these two models in simple words is as follows: a SAX-capable parser calls a
registered function for each start tag, end tag, and the data inbetween. The parsing is done
sequentially, so there is no need to have the whole document in memory at any time (in some cases it
is not even necessary to have the whole document available, it may be received in chunks). The
downside is that the elements have to be processed as they are encountered during parsing. If an
application needs access to previous or later elements, it has to do some sort of buffering. On the other
hand, a DOM-capable parser creates an in-memory representation of the whole document. This may
need a lot of memory for large documents, but all elements can be accessed freely at any time during
processing. For you as the end-user the parser interface issue boils down to the question which XSLT
engine can be used with which parser.

• Validating vs. non-validating: In the XML world documents do not have to be valid (in contrast to
SGML), but they can be validated against a DTD if necessary. Therefore you can use either validating
and non-validating parsers depending on your needs.

• XML uses Unicode to encode characters. The programming language Java also builds on Unicode
from the ground up, so processing XML with Java is kind of a natural match. The only downside is
that Java programs tend to be a little slower than C/C++ programs and that you need the Java Runtime
Engine (a bytecode interpreter) to run the applications. C/C++ programs are faster and have a smaller
footprint, but programming Unicode in C or C++ is just not as popular.

Table 1. XML parsers and XSLT processors covered in this tutorial

Name Parser interface Validating parser Language

xsltproc DOM, SAX yes C

XP/XT SAX no Java

Xerces/Xalan DOM, SAX yes Java

Saxon/Ælfred SAX ? Java

None of the mentioned XSLT processors can directly create printable output (all do HTML output,
though). Therefore we need a set of additional applications to transform our XML documents into PDF
and RTF files.

Note: XML differs from SGML in that a SYSTEM identifier for the DTD file is mandatory. In order to
keep the files portable, usually a URL is specified for this purpose instead of a local path. This
means that for most XML transformations an internet connection is mandatory. It is not necessary for
editing XML files with PSGML as PSGML does not attempt to resolve URLs.

Chapter 10. xslide
Just as we previously taught Emacs to nicely edit SGML and XML files with thePSGML package, we
will now install a package that enhances our user experience with XSLT stylesheets.

Get the files

1. Xslide (http://www.menteith.com/xslide/)

Install xslide

1. Extract the xslide archive

Extract the xslide archive into a temporary directory likec:\temp .

2. Copy Emacs lisp files to the Emacssite-lisp directory

Copy all .el files and the filexslide-initial.xsl to your common Emacssite-lisp

directory, e.g.C:\Programs\emacsen\site-lisp

3. Byte-compile the Emacs lisp files

In Emacs, run the following commmandAlt-x byte-compile-file path/to/xslide-file in
turn for each of the filesxslide.el , xslide-abbrev.el , xslide-data.el , xslide-font.el ,
xslide-process.el .

4. Modify _emacs

Insert the following code into your_emacs file:

;; XSL mode (using the xslide package)
(autoload ’xsl-mode "xslide" "Major mode for XSL stylesheets." t)

;; Turn on font lock when in XSL mode
(add-hook ’xsl-mode-hook

’turn-on-font-lock)

(setq auto-mode-alist
(append

(list
’("\\.fo" . xsl-mode)
’("\\.xsl" . xsl-mode))

auto-mode-alist))

;; Uncomment if using abbreviations
;; (abbrev-mode t)

49

Chapter 10. xslide

The first steps with PSGML and XSlide
Just as we did in the case ofPSGMLwe should prepare a simple XML document with an accompanying
stylesheet to get used to the editing environment and to have something to test the shortly-to-be-installed
parsers and processors with. We will use essentially the same document as in the PSGML example,
adjusted to the XML syntax. This example also does not use an external DTD to simplify processing.
There is no need to understand the syntax of the DTD at the moment, simply type it or copy it to your
document.

Write an XML document with PSGML
Restart Emacs to apply the latest changes to your_emacs and open a new XML document: TypeC-x
C-f ~/test.xml to create the documenttest.xml in your home directory (you may as well type the full
path of a file in any other convenient directory). Emacs should load the XML mode (check the modeline
close to the bottom of the Emacs window). Now type or paste the following DTD into the new buffer:

<?xml version="1.0"?>
<!DOCTYPE HTMLLite [
<!ELEMENT HTMLLite (H1|P)* >
<!ELEMENT H1 (#PCDATA|EM|STRONG)* >
<!ELEMENT P (#PCDATA|EM|STRONG)* >
<!ELEMENT EM (#PCDATA) >
<!ELEMENT STRONG (#PCDATA) >
]>

As you just have created the DTD, PSGML is not yet aware of it (when you load an existing XML file,
PSGML will automatically parse the DTD due to a setting in our_emacs file). PressC-c C-p to parse
the DTD now. Check your DTD again if PSGML issues an error.

Now place the cursor at the end of the buffer and start to append the contents of the document to the
prolog. Use the menu commandMarkup−→Insert Element to enter the first element. You will notice
that PSGML offers only one possible element to insert: HTMLLite. Accept this and insert another
element right where you are. This time you will see that you can either insert a H1 or a P element. You
can enter some text between the H1 or P start and end tags. Try to insert another element when the cursor
is inside the text in a H1 or P element. This will allow you to insert either a STRONG or an EM element,
which again can hold some text. Try also the keyboard shortcut for inserting an element,C-c C-e. You
will be prompted for the name of an element. Either enter the full name of an element, the first letters and
then the tab key, or simply press the tab key twice to see a list of possible tags at the given location. Note
that you don’t have to enter hard returns or to manually indent, PSGML takes care of this.

When you’re done, save your document by pressingC-c C-s. A valid HTMLLite document may look
like this:

<HTMLLite>
<H1>Character of Constantine</H1>
<P>The person, as well as the mind, of Constantine had been enriched by

nature with her choicest endowments.</P>

50

Chapter 10. xslide

<P>His stature was lofty, his countenance majestic, his
deportment graceful; his strength and activity were displayed
in every manly exercise, and, from his earliest youth to a very
advanced season of life, he preserved the vigour of his constitution
by a strict adherence to the domestic virtues of
chastity and temperance.</P>

</HTMLLite>

You should also have noticed that PSGML performs syntax-highlighting: Start/end tags and other
language-related constructs are shown in different colors to increase readability. Do not delete your test
document yet, because you may wish to reuse it in the next chapters.

Writing an XSLT stylesheet with xslide
Now let us create a matching stylesheet for our XML document. We cannot do much with it right now
besides creating it, but you’ll have something to play with in the next chapters.

Create a newtest.xsl file in the same directory that contains yourtest.xml document: TypeC-x C-f
~/test.xsl(or whatever path you chose previously). You should be pleasantly surprised to see that xslide
automatically inserts a skeleton stylesheet for HTML output into a new, empty buffer.

The skeleton stylesheet processes the root element ("/") and creates theHTMLandBODYelements of the
output file. If you wish, you can enhance the output by adding aHEADelement with aTITLE .

Move your cursor just after thexslt:template end tag and pressC-c-<. This will invoke the
xsl-insert-tagcommand. You can use the tab-completion in the minibuffer to create another
xsl:template element. As an attribute, entermatch="H1" . Without much surprise, this template will
process the HTMLLiteH1 elements. As the content of this template, enter:

<h1>
<xsl:apply-templates/>

</h1>

This will simply map the HTMLLiteH1 element to the HTMLH1 element.

Now add the other missing templates in the same way. You should end up with a stylesheet that looks
somewhat like this:

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="html"/>

<xsl:template match="/">
<html>

<head>

51

Chapter 10. xslide

<title>HTMLlite document</title>
</head>
<body bgcolor="#FFFFFF">

<xsl:apply-templates/>
</body>

</html>
</xsl:template>
<xsl:template match="H1">

<h1>
<xsl:apply-templates/>

</h1>
</xsl:template>
<xsl:template match="P">

<p>
<xsl:apply-templates/>

</p>
</xsl:template>
<xsl:template match="EM">

<i>
<xsl:apply-templates/>

</i>
</xsl:template>
<xsl:template match="STRONG">

<xsl:apply-templates/>

</xsl:template>

</xsl:stylesheet>

Further Reading
Due to the popularity of XML and XSLT, there is not exactly a lack of books and online resources about
these topics. One example of a fairly concise and pleasant introduction into XSL and XSLT can be found
here (http://www.brics.dk/~amoeller/XML/transformation/index.html).

Summary
Now you should be able to:

• Write simple XML documents

• Write simple XSLT stylesheets

52

Chapter 11. xsltproc: a XSLT engine in C
xsltproc is a small piece of a larger effort: it is just one application of the libxsl package which in turn
uses the libxml package to parse xml. Both are C libraries intended to build XML/XSL-capable
applications, but we’ll use only xsltproc as the probably smallest available parser/processor combo. As
xsltproc is implemented in C, there is no need to have the Java Runtime Engine installed, and it should
run faster especially on old hardware.

Get the files

1. libxml/libxslt Win32 binaries (http://www.fh-frankfurt.de/~igor/projects/libxml/index.html). You
need the libxml, the libxslt, and the iconv binaries packages.

Install xsltproc

1. Install the binary and the libraries

Create a new subdirectory in a convenient location, e.g.C:\Programs\xsltproc . Copy the
following executables and libraries from their archive files to the newxsltproc directory:

libxslt-1.0.3-win32.zip

xsltproc.exe , libexslt.dll , andlibxslt.dll

libxml2-2.4.3.win32.zip

libxml2.dll (the smaller, non-debug version in the archive)

iconv-1.7.win32.zip

iconv.dll

2. Adjust PATH

Add the newC:\Programs\xsltproc to your PATH environment variable. Use the procedure
outlinedpreviously.

The first steps with xsltproc
To see what xsltproc can do for us, we’ll use the XML document and stylesheet that we created in the
previous chapter. We will try to generate a HTML rendering of the XML document.

To this end, change to the directory that contains these files and run the following command in your shell:

C:\user\myself> xsltproc test.xsl test.xml > test.html

53

Chapter 11. xsltproc: a XSLT engine in C

View the resultingtest.html file in your favourite browser. You should see a nicely formatted HTML
representation of your XML document.

Further reading
The usage of xsltproc is explained in some detail here (http://xmlsoft.org/XSLT/xsltproc.html).

54

Chapter 12. Saxon, XT, Xalan: Java-based XSLT
engines

This chapter presents three Java-based XSLT engines with their XML parsers. You can install all of
them, or choose the one most suitable for your needs.

XP and XT were written by one of the most renowned programmers in the SGML/XML field, James
Clark. The parser is non-validating which helps it to be the fastest XML parser implemented in Java (so
the author claims).

Xerces and Xalan are being developed under the same virtual roof as the Apache web server and other
web-related tools. Xerces is a full-fledged validating XML parser with DOM and SAX interfaces. Xalan
is a matching XSLT engine. Implementations in both C++ and Java are available. We’ll use the Java
versions of both tools here.

Saxon is actually both a Java library for XML processing and a XSLT engine. We will look at the latter
functionality only, though. Saxon ships with the Ælfred XML parser.

To run these Java applications, we will install the latest version of Sun’s Java Runtime Engine. Before
you go ahead you should check whether your system already has this JRE installed, as browsers like
Netscape and Mozilla use this to run Java applets. Browse the software list in the “Add/remove software”
applet in the system control panel to see which version of the JRE, if at all, is installed. If you have a real
old version (something like 1.1) you’ll still have to update.

Get the files

1. XP (ftp://ftp.jclark.com/pub/xml/xp.zip)

2. XT (ftp://ftp.jclark.com/pub/xml/xt.zip)

3. Xalan (Java) (http://xml.apache.org/dist/xalan-j/). This archive contains all necessary classes
including the Xerces parser.

4. Saxon 6.4.4 (http://saxon.sourceforge.net) Choose the full version, not the smaller, but slower,
instant version.

5. Java Runtime Engine (http://java.sun.com/j2se/1.3/jre/download-windows.html)

Install the Java Runtime Engine

1. Run the installer

Run the self-extracting binary that you downloaded. This will use the familiar InstallShield wizard
to ask you a few questions. Select a suitable installation directory, e.g.C:\Programs\Javasoft ,
and you’re basically done.

2. Adjust PATH

55

Chapter 12. Saxon, XT, Xalan: Java-based XSLT engines

In order to run the Java command-line applications conveniently, add thebin directory, e.g.
C:\Programs\Javasoft\JRE\1.3.1\bin to your PATH environment variable. Use the
procedure outlinedpreviously.

3. Fix CLASSPATH

In older versions of the Java Runtime Engine, the environment variable CLASSPATH was used to
locate additional Java classes. The use of this environment variable is discouraged in newer versions,
and a command-line switch forjava and related tools should be used instead. To avoid conflicts,
you should check whether this variable is set on your system. Unless specific tools other than the
Java tools need it, you should remove it.

Install the XP and XT Java classes

1. Create a class repository

To simplify maintenance, all your Java classes should be installed in a single directory tree. Unless
you already have such a repository, you should create a directory right now, like
C:\Programs\java .

2. Extract the archives

Extract the filexp.jar from the XP archive and copy it to your Java class repository, e.g.
C:\Programs\java . Extract the filesxt.jar andsax.jar from the XT archive and copy them to
the same location.

Install the Xerces and Xalan Java classes

1. Extract the archives

Extract the filesxerces.jar andxalan.jar from the Xalan archive and copy them to your Java
class repository, e.g.C:\Programs\java .

Install the Saxon and Ælfred Java classes

1. Extract the archives

Extract the filessaxon.jar , saxon-fop.jar , andsaxon-jdom.jar from the Saxon archive and
copy them to your Java class repository, e.g.C:\Programs\java .

56

Chapter 12. Saxon, XT, Xalan: Java-based XSLT engines

The first steps with the Java-based tools
The first test runs with these tools will also not be too exciting, but rest assured that it will work all the
same if we later use "real" documents like DocBook XML documents.

Change to the directory that contains the test files that we createdpreviouslyand run the following
commands in your shell (the backslashes at the end of the lines denote continuation of the line - don’t
type them in):

C:\user\myself> java -cp "C:\Programs\java\xt.jar;C:\Programs\java\xp.jar" \
com.jclark.xsl.sax.Driver test.xml test.xsl > test.html

C:\user\myself> java -cp "C:\Programs\java\xalan.jar;C:\Programs\java\xerces.jar" \
org.apache.xalan.xslt.Process -in test.xml -xsl test.xsl -out test.html

C:\user\myself> java -cp "C:\Programs\java\saxon.jar;C:\Programs\java\saxon-fop.jar; \
C:\Programs\java\saxon-jdom.jar" com.icl.saxon.StyleSheet test.xml test.xsl \
-o test.html

View the resultingtest.html file in your favourite browser. You should see a nicely formatted HTML
representation of your XML document.

Further Reading
All packages ship with extensive documentation in HTML format.

57

Chapter 13. Creating printable output
While Jade/OpenJade use built-in backends to create HTML and printable output, XSLT engines use a
different path to arrive at the same end: They are capable to transform the XML document to
“Formatting Objects”. The result is a temporary XML document which contains all data and the
necessary formatting informations. This temporary document is fed to another application (a formatting
objects processor) to create the final printable output.

FOP is a Java application to directly create PDF, MIF, PCL, or plain text files from FO output.
Alternatively, if you pass a XML document and a XSL stylesheet, FOP will use Xerces and Xalan to do
the XSLT transformation on the fly.

JFOR is another Java application which creates RTF files from FO output. RTF files can be viewed and
printed with most word processors.

xmltex and the PassiveTeX macros play a similar role for XML as Jade’s TeX backend and the JadeTeX
macros play for SGML (the macros are actually closely related). PassiveTeX uses the FO output of an
XSLT engine to generate PDF output. While this sounds more complicated than directly creating PDF,
this approach makes use of the superior layout capabilities of the TeX system. The macros were already
installed with the TeX installation, so we just need to look at a few examples how to use them.

Get the files

1. FOP (http://xml.apache.org/dist/fop/)

2. JFOR (http://sourceforge.net/projects/jfor). Pick the latest binary package (jfor-x.y.z.jar)

Install FOP

1. Extract the archive

Extract the filesfop.jar , config.xml , userconfig.xml , avalon-framework-4.0.jar ,
batik.jar , jimi-1.0.jar , andlogkit-1.0b4.jar to your Java class repository, e.g.
C:\Programs\java .

Install JFOR

1. Install the class file

Copy the JFOR class archivejfor-0.5.1 to your Java class repository, e.g.C:\Programs\java .

58

Chapter 13. Creating printable output

The first steps towards printable output
...will have to wait until we have a suitable DTD with stylesheets to play with. The next chapter will
provide example transformations of DocBook XML documents.

Further Reading
The Java packages all ship with extensive HTML documentation.

59

Chapter 14. DocBook XML DTD and XSLT
stylesheets

The DocBook XML DTD is the XML counterpart of the DocBook SGML DTD and tries to match the
latter as close as the differences between SGML and XML permit. With a few caveats, it is generally
possible to migrate any DocBook SGML document to XML and vice versa.

Although you could also use DSSSL stylesheets and a DSSSL engine to transform your XML
documents, XSLT has superseded DSSSL in the realm of XML. Fortunately Norm Walsh provides also
an XSLT equivalent of his modular DSSSL stylesheets, so at least for the HTML output there is not
much difference in the rendering.

Get the files

1. DocBook XML DTD (http://www.oasis-open.org/docbook/xml/4.1.2/docbkx412.zip)

2. docbook-xsl (http://sourceforge.net/projects/docbook/) The XSLT stylesheets

Note: In contrast to the DSSSL stylesheets, the XSLT stylesheets contain their documentation in the
same archive, so you don’t have to download them separately.

Install the DocBook XML DTD

Note: The procedure to install the XML version of the DTD is pretty similar to the installation of the
SGML version. If you set up your system for both SGML and XML processing, chances are that
pieces of the _emacs code described below already exist. Instead of just pasting the following chunks
at the end of _emacs , you should modify your existing code by merging the missing pieces.

1. Unzip the files

Extract the contents of the DocBook XML DTD archive into a new directory in your XML tree, e.g.
c:\user\default\xml\dtd\docbook412 . Using the version number in the subdirectory name
simplifies the installation of several versions in parallel (you might need to install or keep older
versions for reasons of compatibility with older, existing documents).

2. Register docbook.cat

The DTD archive contains a catalog file nameddocbook.cat which must be added to the
SGML_CATALOG_FILES environment variable. Use the procedure as describedpreviously.
Append the full path (including the filename) of the catalog file, e.g.
c:\user\default\xml\dtd\docbook412\docbook.cat , to the semicolon-separated list.

60

Chapter 14. DocBook XML DTD and XSLT stylesheets

Locate the line

-- OVERRIDE YES --

in the catalog file and remove the leading and trailing dashes to uncomment this entry. This will
allow PSGML to work smoothly with the XML DTD.

3. Createecatalog

Use Emacs to create the fileecatalog in the DocBook XML directory, e.g.
c:\user\default\xml\dtd\docbook412 . Insert the following line:

PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "docbookx.ced"

and save the file.

4. Register your ecatalog file

Put the following lines into your_emacs :

;; ecat support
(setq sgml-ecat-files

(list
(expand-file-name "c:/user/default/xml/dtd/docbook412/ecatalog")

))

5. Access the DTDs via the menu

PSGML allows to insert the document type declaration via menu commands. To this end, all DTDs
that you want to use this way have to be added to a variable in your_emacs . Insert the following
lines into your configuration file:

;; PSGML menus for creating new documents
(setq sgml-custom-dtd
’(

("DocBook XML 4.1.2"
"<!DOCTYPE book PUBLIC \"-//OASIS//DTD DocBook XML V4.1.2//EN\" \"http://www.oasis-

open.org/docbook/xml/4.1.2/docbookx.dtd\">")
)

)

Install the DocBook XSLT stylesheets

1. Unzip the archive

Extract the archive containing the DocBook stylesheets into a suitable stylesheets subdirectory, e.g.
c:\user\default\xml\stylesheets . This will create a new subdirectory
docbook-xsl-1.45 . If you want to, you can change the name of the directory todocbook-xsl .

61

Chapter 14. DocBook XML DTD and XSLT stylesheets

This makes updating easier, as you can always rename back your current version and install the
newest version asdocbook-xsl . This way batch files with hardcoded paths will always use the
latest installed version , but you still have your “last known good” version just in case.

The first steps with DocBook

Create a document
Open a new XML document by typingC-x C-f ~/dbtest.xml. Insert the DocBook document type
declaration via theDTD−→Insert DTD−→DocBook XML 4.1.2 menu command. Insert some
elements into the document, e.g. starting with the chapter and sect1 tags. Enter some para elements to
hold some text. Validate your document with theSGMLValidate menu command. Make sure you use
the SGML declaration for XML documents (xml.dcl).

Create HTML output
HTML output is the simpler transformation as it requires only one application (the XSLT engine). Here
is how you can generate a HTML file from your test document with the various XSLT engines (the
backslashes at the end of the lines denote continuation of the line - don’t type them in):

C:\user\myself >xsltproc C:\user\default\xml\stylesheets\docbook-xsl\html\docbook.xsl \
dbtest.xml > dbtestxp.html

C:\user\myself >java -cp "C:\Programs\java\xt.jar;C:\Programs\java\xp.jar" \
com.jclark.xsl.sax.Driver dbtest.xml \
C:\user\default\xml\stylesheets\docbook-xsl\html\docbook.xsl > dbtestxt.html

C:\user\myself >java -cp "C:\Programs\java\xalan.jar;C:\Programs\java\xerces.jar" \
org.apache.xalan.xslt.Process -in test.xml -xsl \
C:\user\default\xml\stylesheets\docbook-xsl\html\docbook.xsl \
-out dbtestxc.html

C:\user\myself >java -cp "C:\Programs\java\saxon.jar" \
com.icl.saxon.StyleSheet -o dbtestsx.html dbtest.xml \
C:\user\default\xml\stylesheets\docbook-xsl\html\docbook.xsl

Create printable output
Creating printable output from an XML document is a two-step procedure in most cases: First we have to
create an intermediate XML file containing formatting objects (the FO file). This is done with an XSLT
processor and a suitable stylesheet. The second step needs some sort of formatting objects processor to
actually create the printable output from the intermediate FO file. Let’s first see how we can create this
FO file with our XSLT engines (you should of course only run those engines that you actually installed).

62

Chapter 14. DocBook XML DTD and XSLT stylesheets

In case you want to try all of them it is prudent to use different names for the output files each time, as
shown here (the backslashes at the end of the lines denote continuation of the line - don’t type them in):

C:\user\myself >xsltproc C:\user\default\xml\stylesheets\docbook-xsl\fo\docbook.xsl \
dbtest.xml > dbtestxp.fo

C:\user\myself >java -cp "C:\Programs\java\xt.jar;C:\Programs\java\xp.jar"\
com.jclark.xsl.sax.Driver dbtest.xml \
C:\user\default\xml\stylesheets\docbook-xsl\fo\docbook.xsl > dbtestxt.fo

C:\user\myself >java -cp "C:\Programs\java\xalan.jar;C:\Programs\java\xerces.jar" \
org.apache.xalan.xslt.Process \
-in test.xml -xsl C:\user\default\xml\stylesheets\docbook-xsl\fo\docbook.xsl \
-out dbtestxc.fo

C:\user\myself >java -cp "C:\Programs\java\saxon.jar" \
com.icl.saxon.StyleSheet -o dbtestsx.fo dbtest.xml \
C:\user\default\xml\stylesheets\docbook-xsl\fo\docbook.xsl

Now we try to turn our FO file into a PDF file using the PassiveTeX macros. Run the following
command, substituting the FO filename as appropriate:

C:\user\myself >pdfxmltex dbtest.fo

Alternatively we can use FOP to transform the XML document to PDF with a single command (this is
the exception to the two-step rule, but you can guess from the classpath that FOP uses Xalan internally):

C:\user\myself >java -cp "C:\Programs\java\fop.jar; \
C:\Programs\java\batik.jar;C:\Programs\java\jimi-1.0.jar; \
C:\Programs\java\xalan.jar; C:\Programs\java\xerces.jar; \
C:\Programs\java\logkit-1.0b4.jar;C:\Programs\java\avalon-framework-4.0.jar" \
org.apache.fop.apps.Fop -xsl \
"C:\user\default\xml\stylesheets\docbook-xsl-1.45\fo\docbook.xsl" \
-xml test.xml -pdf test.pdf

Finally we can try and see what the RTF output from the FO file looks like (substitute the FO filename as
appropriate):

C:\user\myself >java -cp "C:\Programs\java\jfor-0.5.1.jar; \
C:\Programs\java\xerces.jar" ch.codeconsult.jfor.main.CmdLineConverter \
dbtest.fo dbtest.rtf

Further Reading
The DocBook DTD documentation (http://www.oasis-open.org/docbook/documentation/index.html) is
available at OASIS.

Norman Walsh has writtenDocBook: The Definitive Guide, which is available as a book at O’Reilly
(http://www.ora.com) and online (http://www.nwalsh.com/docbook/defguide/index.html). While this

63

Chapter 14. DocBook XML DTD and XSLT stylesheets

book mainly covers the SGML version, it contains all necessary information for the XML version and
helpful hints to migrate SGML documents to XML.

64

V. Concluding remarks
Now that you have gone through a few hours of unzipping files, modifying your system, and editing files
with a strange syntax, you should have a running system to write and publish SGML documents. This
concluding chapter is intended to clean up the installation and to tell you where to go if something
doesn’t work as expected.

Chapter 15. Cleaning up
After completing the installation, there is a final step to do if you’re not the sole SGML user on your
computer. If the SGML system is to be used by several people on your NT box, it is necessary to move
the relevant parts of your_emacs to one of the system-wide customization filessite-start.el or
default.el . As pointed out previously,site-start.el usually contains the startup code that may be
overridden by the users, whereasdefault.el contains the code which should not be overridden.

66

Chapter 16. What if...
As things like SGML, DSSSL, and probably Emacs and Emacs Lisp are not as trivial as (but more
rewarding than) typing something into MS Word, there will most likely remain a lot of questions that this
short tutorial couldn’t answer. This section covers some of the internet resources which may be helpful in
the case of problems.

• General questions about SGML and XML and the usage of related software can be discussed in the
comp.text.sgml (news://comp.text.sgml) and comp.text.xml (news://comp.text.xml) newsgroups,
respectively.

• Questions about DSSSL and OpenJade will most likely be answered in the DSSSL mailing list
(http://www.mulberrytech.com/dsssl/dssslist/). This link will also guide you to the list archive.

• If you look for further information about XSL, have a look at Dave Pawson’s XSL FAQ
(http://www.dpawson.co.uk/) or join the XSL-List
(http://www.mulberrytech.com/xsl/xsl-list/index.html). This link will also guide you to the list archive.

• General questions about TeX, LaTeX, and JadeTeX can be posted to the comp.text.tex
(news://comp.text.tex) newsgroup.

• Questions specific to the fpTeX distribution can be discussed in the fpTeX mailing list. To subscribe,
visit the fpTeX mailing list info page (http://www.tug.org/mailman/listinfo/fptex). The mailing list is
archived (http://www.tug.org/pipermail/fptex/). Send contributions to fptex@tug.org
(mailto:fptex@tug.org).

• General questions to Emacs are welcome at the comp.emacs (news://comp.emacs) newsgroup.

• Specific questions about the NTEmacs port of GNU Emacs should be sent to the help-emacs-windows
mailing list. To obtain information about this list or to subscribe, please visit the help-emacs-windows
info page (http://mail.gnu.org/mailman/listinfo/help-emacs-windows). The mailing list is archived
(http://mail.gnu.org/pipermail/help-emacs-windows/). Send contributions to this list to
help-emacs-windows@gnu.org (mailto:help-emacs-windows@gnu.org).

• If you have any problems with the manual itself, be it you cannot figure out what the author meant or
be it that things appear to be different on your computer, do not hesitate to contact the author
(hoenicka_markus@compuserve.com (mailto:hoenicka_markus@compuserve.com)). I will try to
incorporate all suggestions, corrections, bugfixes and the like into future versions for the benefit of all
readers.

67

Appendix A. GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense
of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author
and publisher a way to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work that contains a notice placed by the copyright holder
saying it can be distributed under the terms of this License. The "Document", below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(For example, if the Document is in part a textbook of mathematics, a Secondary Section may not
explain any mathematics.) The relationship could be a matter of historical connection with the subject or
with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License.

68

Appendix A. GNU Free Documentation License

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent
modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and the machine-generated HTML produced by
some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY
If you publish printed copies of the Document numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must
present the full title with all words of the title equally prominent and visible. You may add other material
on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of
the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy
of the Document, free of added material, which the general network-using public has access to download

69

Appendix A. GNU Free Documentation License

anonymously at no charge using public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that
this Transparent copy will remain thus accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title,
year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J.Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

70

Appendix A. GNU Free Documentation License

K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and
preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties–for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."

71

Appendix A. GNU Free Documentation License

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for the compilation. Such a
compilation is called an "aggregate", and this License does not apply to the other self-contained works
thus compiled with the Document, on account of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on
covers that surround only the Document within the aggregate. Otherwise they must appear on covers
around the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this License. In case of a disagreement
between the translation and the original English version of this License, the original English version will
prevail.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

72

Appendix A. GNU Free Documentation License

10. FUTURE REVISIONS OF THIS LICENSE
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and
put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are
invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts
being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

73

	SGML for Windows NT
	Table of Contents
	List of Tables
	Preface
	Chapter 1. Introduction
	What this is all about
	Who should read this tutorial?
	Contents in a nutshell
	System Requirements
	System Requirements II: Want Cygwin?
	Let us now praise free software

	Chapter 2. Overview: The components
	Edit texts
	Validate SGML and XML documents
	Publish SGML documents
	Publish XML documents

	Chapter 3. Some general remarks on installation procedures
	Administrator privileges
	Set environment variables
	Installation paths
	How to use archives
	How to use the code snippets

	Chapter 4. Emacs
	Get the files
	Emacs installation
	Gnuserv installation
	Ghostscript/Ghostview installation
	The first steps with Emacs
	Further Reading
	Summary

	Chapter 5. PSGML and TDTD
	Get the files
	Install PSGML
	Install TDTD
	The first steps with PSGML
	Further Reading
	Summary

	Chapter 6. TeX
	Get the files
	Install TeX
	The first steps with TeX
	Further Reading
	Summary

	Chapter 7. OpenJade and onsgmls
	Get the files
	Install OpenJade and the OpenSP suite
	The first steps with OpenJade and onsgmls
	Further Reading
	Summary

	Chapter 8. IDE helpers
	Get the files
	Install PSGML-Jade
	Install PSGML-DSSSL
	Install AucTeX
	The first steps with the SGML IDE
	Further Reading

	Chapter 9. DocBook and HTML document type definitions
	Get the files
	Some general remarks on DTDs and catalogs
	Install the HTML DTDs
	Install the DocBook SGML DTD
	Install the DocBook DSSSL stylesheets
	Install the ISO entity sets
	Install Perl
	The first steps with the HTML DTDs
	The first steps with DocBook
	Further Reading

	Chapter 10. xslide
	Get the files
	Install xslide
	The first steps with PSGML and XSlide
	Write an XML document with PSGML
	Writing an XSLT stylesheet with xslide

	Further Reading
	Summary

	Chapter 11. xsltproc: a XSLT engine in C
	Get the files
	Install xsltproc
	The first steps with xsltproc
	Further reading

	Chapter 12. Saxon, XT, Xalan: Java-based XSLT engines
	Get the files
	Install the Java Runtime Engine
	Install the XP and XT Java classes
	Install the Xerces and Xalan Java classes
	Install the Saxon and lfred Java classes
	The first steps with the Java-based tools
	Further Reading

	Chapter 13. Creating printable output
	Get the files
	Install FOP
	Install JFOR
	The first steps towards printable output
	Further Reading

	Chapter 14. DocBook XML DTD and XSLT stylesheets
	Get the files
	Install the DocBook XML DTD
	Install the DocBook XSLT stylesheets
	The first steps with DocBook
	Create a document
	Create HTML output
	Create printable output

	Further Reading

	Chapter 15. Cleaning up
	Chapter 16. What if...
	Appendix A. GNU Free Documentation License
	0. PREAMBLE
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	How to use this License for your documents

